ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio continuum observations of LMC SNR J0550-6823

97   0   0.0 ( 0 )
 نشر من قبل Evan Crawford
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on new Australia Telescope Compact Array (ATCA) observations of the Large Magellanic Cloud (LMC) supernova remnant (SNR) J0550-6823 (DEM L328). This object is a typical horseshoe SNR with a diameter of 373 x 282 +- 4 (90 x 68 +- 1), making it one of the largest known SNRs in the Local Group. We estimate a relatively steep radio spectral index of alpha = -0.79 +- 0.27. However, its stronger than expected polarisation of 50% +- 10% is atypical for older and more evolved SNRs. We also note a strong correlation between [Oiii] and radio images, classifying this SNR as oxygen dominant.



قيم البحث

اقرأ أيضاً

We report the discovery of a giant double-lobed (lobe-core-lobe) radio-continuum structure associated with QSO J0443.8-6141 at z=0.72. This QSO was originally identified during the follow-up of a sample of ROSAT All Sky Survey sources at radio and op tical frequencies. With a linear size of ~0.77 Mpc, QSO J0443.8-6141 is classified as a giant radio source (GRS); based on its physical properties, we classify QSO J0443.8-6141 as a FR II radio galaxy. High-resolution observations are required to reliably identify GRSs; the next generation of southern-sky radio and optical surveys will be crucial to increasing our sample of these objects.
We present Hitomi observations of N132D, a young, X-ray bright, O-rich core-collapse supernova remnant in the Large Magellanic Cloud (LMC). Despite a very short observation of only 3.7 ks, the Soft X-ray Spectrometer (SXS) easily detects the line com plexes of highly ionized S K and Fe K with 16-17 counts in each. The Fe feature is measured for the first time at high spectral resolution. Based on the plausible assumption that the Fe K emission is dominated by He-like ions, we find that the material responsible for this Fe emission is highly redshifted at ~800 km/s compared to the local LMC interstellar medium (ISM), with a 90% credible interval of 50-1500 km/s if a weakly informative prior is placed on possible line broadening. This indicates (1) that the Fe emission arises from the supernova ejecta, and (2) that these ejecta are highly asymmetric, since no blue-shifted component is found. The S K velocity is consistent with the local LMC ISM, and is likely from swept-up ISM material. These results are consistent with spatial mapping that shows the He-like Fe concentrated in the interior of the remnant and the S tracing the outer shell. The results also show that even with a very small number of counts, direct velocity measurements from Doppler-shifted lines detected in extended objects like supernova remnants are now possible. Thanks to the very low SXS background of ~1 event per spectral resolution element per 100 ks, such results are obtainable during short pointed or slew observations with similar instruments. This highlights the power of high-spectral-resolution imaging observations, and demonstrates the new window that has been opened with Hitomi and will be greatly widened with future missions such as the X-ray Astronomy Recovery Mission (XARM) and Athena.
181 - Esteban D. Araya 2009
We report high sensitivity sub-arcsecond angular resolution observations of the massive star forming region DR21(OH) at 3.6, 1.3, and 0.7 cm obtained with the Very Large Array. In addition, we conducted observations of CH3OH 44 GHz masers. We detecte d more than 30 new maser components in the DR21(OH) region. Most of the masers appear to trace a sequence of bow-shocks in a bipolar outflow. The cm continuum observations reveal a cluster of radio sources; the strongest emission is found toward the molecular core MM1. The radio sources in MM1 are located about 5 north of the symmetry center of the CH3OH outflow, and therefore, they are unlikely to be associated with the outflow. Instead, the driving source of the outflow is likely located in the MM2 core. Although based on circumstantial evidence, the radio continuum from MM1 appears to trace free-free emission from shock-ionized gas in a jet. The orientation of the putative jet in MM1 is approximately parallel to the CH3OH outflow and almost perpendicular to the large scale molecular filament that connects DR21 and DR21(OH). This suggests that the (accretion) disks associated with the outflows/jets in the DR21 - DR21(OH) region have symmetry axes mostly perpendicular to the filament.
N49 (LHA 120-N49) is a bright X-ray supernova remnant (SNR) in the Large Magellanic Cloud. We present new $^{12}$CO($J$ = 1-0, 3-2), HI, and 1.4 GHz radio-continuum observations of the SNR N49 using Mopra, ASTE, ALMA, and ATCA. We have newly identifi ed three HI clouds using ATCA with an angular resolution of ~20: one associated with the SNR and the others located in front of the SNR. Both the CO and HI clouds in the velocity range from 280-291 km s$^{-1}$ are spatially correlated with both the soft X-rays (0.2-1.2 keV) and the hard X-rays (2.0-7.0 keV) of N49 on a ~10 pc scale. CO 3-2/1-0 intensity ratios indicate higher values of the CO cloud toward the SNR shell with an angular resolution of ~45, and thus a strong interaction was suggested. Using the ALMA, we have spatially resolved CO clumps embedded within or along the southeastern rim of N49 with an angular resolution of ~3. Three of the CO clumps are rim-brightened on a 0.7-2 pc scale in both hard X-rays and the radio continuum$:$ this provides further evidence for dynamical interactions between the CO clumps and the SNR shock wave. The enhancement of the radio synchrotron radiation can be understood in terms of magnetic-field amplification around the CO clumps via a shock-cloud interaction. We also present a possible scenario in which the recombining plasma that dominates the hard X-rays from N49 was formed via thermal conduction between the SNR shock waves and the cold$/$dense molecular clumps.
180 - G. Castelleti 2003
We report new high resolution and high sensitivity radio observations of the extended supernova remnant (SNR) CTB 80 (G69.0+2.7) at 240 MHz, 324 MHz, 618 MHz, and 1380 MHz. The imaging of CTB 80 at 240 MHz and 618 MHz was performed using the Giant Me trewave Radio Telescope (GMRT) in India. The observations at 324 MHz and 1380 MHz were obtained using the Very Large Array (VLA, NRAO) in its C and D configurations. The new radio images reveal faint extensions for the asymmetric arms of CTB 80. The arms are irregular with filaments and clumps of size 1 (or 0.6 pc at a distance of 2 kpc). The radio image at 1380 MHz is compared with IR and optical emission. The correspondence IR/radio is excellent along the N arm of CTB 80. Ionized gas observed in the [SII] line perfectly matches the W and N edges of CTB 80. The central nebula associated with the pulsar PSR B1951+32 was investigated with an angular resolution of 10 x 6. The new radio image obtained at 618 MHz shows with superb detail structures in the 8 x 4 E-W ``plateau nebula that hosts the pulsar on its western extreme. A twisted filament, about 6 in extent (~3.5 pc), trails behind the pulsar in an approximate W-E direction. In the bright ``core nebula (size ~45), located to the W of the plateau, the images show a distortion in the morphology towards the W; this feature corresponds to the direction in which the pulsar escapes from the SNR with a velocity of ~240 km/s. Based on the new observations, the energetics of the SNR and of the PWN are investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا