Given a grid diagram for a knot or link K in $S^3$, we construct a spectrum whose homology is the knot Floer homology of K. We conjecture that the homotopy type of the spectrum is an invariant of K. Our construction does not use holomorphic geometry,
but rather builds on the combinatorial definition of grid homology. We inductively define models for the moduli spaces of pseudo-holomorphic strips and disk bubbles, and patch them together into a framed flow category. The inductive step relies on the vanishing of an obstruction class that takes values in a complex of positive domains with partitions.
We study the twisted knot module for the universal deformation of an ${rm SL}_2$-representation of a knot group, and introduce an associated $L$-function, which may be seen as an analogue of the algebraic $p$-adic $L$-function associated to the Selme
r module for the universal deformation of a Galois representation. We then investigate two problems proposed by Mazur: Firstly we show the torsion property of the twisted knot module over the universal deformation ring under certain conditions. Secondly we verify the simplicity of the zeroes of the $L$-function by some concrete examples for 2-bridge knots.
We give a rational surgery formula for the Casson-Walker invariant of a 2-component link in $S^{3}$ which is a generalization of Matveev-Polyaks formula. As application, we give more examples of non-hyperbolic L-space $M$ such that knots in $M$ are d
etermined by their complements. We also apply the result for the cosmetic crossing conjecture.
This paper is a very brief introduction to knot theory. It describes knot coloring by quandles, the fundamental group of a knot complement, and handle-decompositions of knot complements.
This book is an introduction to hyperbolic geometry in dimension three, and its applications to knot theory and to geometric problems arising in knot theory. It has three parts. The first part covers basic tools in hyperbolic geometry and geometric s
tructures on 3-manifolds. The second part focuses on families of knots and links that have been amenable to study via hyperbolic geometry, particularly twist knots, 2-bridge knots, and alternating knots. It also develops geometric techniques used to study these families, such as angle structures and normal surfaces. The third part gives more detail on three important knot invariants that come directly from hyperbolic geometry, namely volume, canonical polyhedra, and the A-polynomial.