ﻻ يوجد ملخص باللغة العربية
We consider a system of one-dimensional spinless particles interacting via long-range repulsion. In the limit of strong interactions the system is a Wigner crystal, with excitations analogous to phonons in solids. In a harmonic crystal the phonons do not interact, and the system never reaches thermal equilibrium. We account for the anharmonism of the Wigner crystal and find the rate at which it approaches equilibrium. The full equilibration of the system requires umklapp scattering of phonons, resulting in exponential suppression of the equilibration rate at low temperatures.
Equilibration of a one-dimensional system of interacting electrons requires processes that change the numbers of left- and right-moving particles. At low temperatures such processes are strongly suppressed, resulting in slow relaxation towards equili
In one-dimensional quantum systems with strong long-range repulsion particles arrange in a quasi-periodic chain, the Wigner crystal. We demonstrate that besides the familiar phonons, such one-dimensional Wigner crystal supports an additional mode of
The spatial Fourier spectrum of the electron density distribution in a finite 1D system and the distribution function of electrons over single-particle states are studied in detail to show that there are two universal features in their behavior, whic
Electron-electron interactions strongly affect the behavior of low-dimensional systems. In one dimension (1D), arbitrarily weak interactions qualitatively alter the ground state producing a Luttinger liquid (LL) which has now been observed in a numbe
Conventional wisdom had long held that a composite particle behaves just like an ordinary Newtonian particle. In this paper, we derive the effective dynamics of a type-I Wigner crystal of composite particles directly from its microscopic wave functio