ترغب بنشر مسار تعليمي؟ اضغط هنا

Packing-Based Approximation Algorithm for the k-Set Cover Problem

171   0   0.0 ( 0 )
 نشر من قبل Huiwen Yu
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a packing-based approximation algorithm for the $k$-Set Cover problem. We introduce a new local search-based $k$-set packing heuristic, and call it Restricted $k$-Set Packing. We analyze its tight approximation ratio via a complicated combinatorial argument. Equipped with the Restricted $k$-Set Packing algorithm, our $k$-Set Cover algorithm is composed of the $k$-Set Packing heuristic cite{schrijver} for $kgeq 7$, Restricted $k$-Set Packing for $k=6,5,4$ and the semi-local $(2,1)$-improvement cite{furer} for 3-Set Cover. We show that our algorithm obtains a tight approximation ratio of $H_k-0.6402+Theta(frac{1}{k})$, where $H_k$ is the $k$-th harmonic number. For small $k$, our results are 1.8667 for $k=6$, 1.7333 for $k=5$ and 1.5208 for $k=4$. Our algorithm improves the currently best approximation ratio for the $k$-Set Cover problem of any $kgeq 4$.



قيم البحث

اقرأ أيضاً

124 - Martin Furer , Huiwen Yu 2013
We study algorithms based on local improvements for the $k$-Set Packing problem. The well-known local improvement algorithm by Hurkens and Schrijver has been improved by Sviridenko and Ward from $frac{k}{2}+epsilon$ to $frac{k+2}{3}$, and by Cygan to $frac{k+1}{3}+epsilon$ for any $epsilon>0$. In this paper, we achieve the approximation ratio $frac{k+1}{3}+epsilon$ for the $k$-Set Packing problem using a simple polynomial-time algorithm based on the method by Sviridenko and Ward. With the same approximation guarantee, our algorithm runs in time singly exponential in $frac{1}{epsilon^2}$, while the running time of Cygans algorithm is doubly exponential in $frac{1}{epsilon}$. On the other hand, we construct an instance with locality gap $frac{k+1}{3}$ for any algorithm using local improvements of size $O(n^{1/5})$, here $n$ is the total number of sets. Thus, our approximation guarantee is optimal with respect to results achievable by algorithms based on local improvements.
Several algorithms with an approximation guarantee of $O(log n)$ are known for the Set Cover problem, where $n$ is the number of elements. We study a generalization of the Set Cover problem, called the Partition Set Cover problem. Here, the elements are partitioned into $r$ emph{color classes}, and we are required to cover at least $k_t$ elements from each color class $mathcal{C}_t$, using the minimum number of sets. We give a randomized LP-rounding algorithm that is an $O(beta + log r)$ approximation for the Partition Set Cover problem. Here $beta$ denotes the approximation guarantee for a related Set Cover instance obtained by rounding the standard LP. As a corollary, we obtain improved approximation guarantees for various set systems for which $beta$ is known to be sublogarithmic in $n$. We also extend the LP rounding algorithm to obtain $O(log r)$ approximations for similar generalizations of the Facility Location type problems. Finally, we show that many of these results are essentially tight, by showing that it is NP-hard to obtain an $o(log r)$-approximation for any of these problems.
We consider the online Min-Sum Set Cover (MSSC), a natural and intriguing generalization of the classical list update problem. In Online MSSC, the algorithm maintains a permutation on $n$ elements based on subsets $S_1, S_2, ldots$ arriving online. T he algorithm serves each set $S_t$ upon arrival, using its current permutation $pi_{t}$, incurring an access cost equal to the position of the first element of $S_t$ in $pi_{t}$. Then, the algorithm may update its permutation to $pi_{t+1}$, incurring a moving cost equal to the Kendall tau distance of $pi_{t}$ to $pi_{t+1}$. The objective is to minimize the total access and moving cost for serving the entire sequence. We consider the $r$-uniform version, where each $S_t$ has cardinality $r$. List update is the special case where $r = 1$. We obtain tight bounds on the competitive ratio of deterministic online algorithms for MSSC against a static adversary, that serves the entire sequence by a single permutation. First, we show a lower bound of $(r+1)(1-frac{r}{n+1})$ on the competitive ratio. Then, we consider several natural generalizations of successful list update algorithms and show that they fail to achieve any interesting competitive guarantee. On the positive side, we obtain a $O(r)$-competitive deterministic algorithm using ideas from online learning and the multiplicative weight updates (MWU) algorithm. Furthermore, we consider efficient algorithms. We propose a memoryless online algorithm, called Move-All-Equally, which is inspired by the Double Coverage algorithm for the $k$-server problem. We show that its competitive ratio is $Omega(r^2)$ and $2^{O(sqrt{log n cdot log r})}$, and conjecture that it is $f(r)$-competitive. We also compare Move-All-Equally against the dynamic optimal solution and obtain (almost) tight bounds by showing that it is $Omega(r sqrt{n})$ and $O(r^{3/2} sqrt{n})$-competitive.
We present a deterministic dynamic algorithm for maintaining a $(1+epsilon)f$-approximate minimum cost set cover with $O(flog(Cn)/epsilon^2)$ amortized update time, when the input set system is undergoing element insertions and deletions. Here, $n$ d enotes the number of elements, each element appears in at most $f$ sets, and the cost of each set lies in the range $[1/C, 1]$. Our result, together with that of Gupta et al. [STOC`17], implies that there is a deterministic algorithm for this problem with $O(flog(Cn))$ amortized update time and $O(min(log n, f))$-approximation ratio, which nearly matches the polynomial-time hardness of approximation for minimum set cover in the static setting. Our update time is only $O(log (Cn))$ away from a trivial lower bound. Prior to our work, the previous best approximation ratio guaranteed by deterministic algorithms was $O(f^2)$, which was due to Bhattacharya et al. [ICALP`15]. In contrast, the only result that guaranteed $O(f)$-approximation was obtained very recently by Abboud et al. [STOC`19], who designed a dynamic algorithm with $(1+epsilon)f$-approximation ratio and $O(f^2 log n/epsilon)$ amortized update time. Besides the extra $O(f)$ factor in the update time compared to our and Gupta et al.s results, the Abboud et al. algorithm is randomized, and works only when the adversary is oblivious and the sets are unweighted (each set has the same cost). We achieve our result via the primal-dual approach, by maintaining a fractional packing solution as a dual certificate. Unlike previous primal-dual algorithms that try to satisfy some local constraints for individual sets at all time, our algorithm basically waits until the dual solution changes significantly globally, and fixes the solution only where the fix is needed.
We design a Local Computation Algorithm (LCA) for the set cover problem. Given a set system where each set has size at most $s$ and each element is contained in at most $t$ sets, the algorithm reports whether a given set is in some fixed set cover wh ose expected size is $O(log{s})$ times the minimum fractional set cover value. Our algorithm requires $s^{O(log{s})} t^{O(log{s} cdot (log log{s} + log log{t}))}$ queries. This result improves upon the application of the reduction of [Parnas and Ron, TCS07] on the result of [Kuhn et al., SODA06], which leads to a query complexity of $(st)^{O(log{s} cdot log{t})}$. To obtain this result, we design a parallel set cover algorithm that admits an efficient simulation in the LCA model by using a sparsification technique introduced in [Ghaffari and Uitto, SODA19] for the maximal independent set problem. The parallel algorithm adds a random subset of the sets to the solution in a style similar to the PRAM algorithm of [Berger et al., FOCS89]. However, our algorithm differs in the way that it never revokes its decisions, which results in a fewer number of adaptive rounds. This requires a novel approximation analysis which might be of independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا