ﻻ يوجد ملخص باللغة العربية
Stabilizing a nulling interferometer at a nanometric level is the key issue to obtain deep null depths. The PERSEE breadboard has been designed to study and optimize the operation of a cophased nulling bench in the most realistic disturbing environment of a space mission. This presentation focuses on the current results of the PERSEE bench. In terms of metrology, we cophased at 0.33 nm rms for the piston and 80 mas rms for the tip/tilt (0.14% of the Airy disk). A Linear Quadratic Gaussian (LQG) control coupled with an unsupervised vibration identification allows us to maintain that level of correction, even with characteristic vibrations of nulling interferometry space missions. These performances, with an accurate design and alignment of the bench, currently lead to a polychromatic unpolarised null depth of 8.9E-6 stabilized at 3E-7 on the [1.65-2.45] mum spectral band (37% bandwidth).
Nulling interferometry is still a promising method to characterize spectra of exoplanets. One of the main issues is to cophase at a nanometric level each arm despite satellite disturbances. The bench PERSEE aims to prove the feasibility of that techn
The Planet Formation Imager (PFI) is a project for a very large optical interferometer intended to obtain images of the planet formation process at scales as small as the Hill sphere of giant exoplanets. Its main science instruments will work in the
The New IRAM KID Array (NIKA) is a dual-band camera operating with frequency multiplexed arrays of Lumped Element Kinetic Inductance Detectors (LEKIDs) cooled to 100 mK. NIKA is designed to observe the intensity and polarisation of the sky at 1.25 an
The demand for higher resolution telescopes leads to segmented primary mirrors which need to be phased for operation. A phasing sensor applying a wavelength sweep technique provides a large capture range without modulating the position of individual
Segmented aperture telescopes require an alignment procedure with successive steps from coarse alignment to monitoring process in order to provide very high optical quality images for stringent science operations such as exoplanet imaging. The final