ترغب بنشر مسار تعليمي؟ اضغط هنا

Density Waves Excited by Low-Mass Planets in Protoplanetary Disks II: High-Resolution Simulations of the Nonlinear Regime

119   0   0.0 ( 0 )
 نشر من قبل Ruobing Dong
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate numerically the propagation of density waves excited by a low-mass planet in a protoplanetary disk in the nonlinear regime, using 2D local shearing box simulations with the grid-based code Athena at high spatial resolution (256 grid points per scale height h). The nonlinear evolution results in the wave steepening into a shock, causing damping and angular momentum transfer to the disk. On long timescales this leads to spatial redistribution of the disk density, causing migration feedback and potentially resulting in gap opening. Previous numerical studies concentrated on exploring these secondary phenomena as probes of the nonlinear wave evolution. Here we focus on exploring the evolution of the basic wave properties, such as its density profile evolution, shock formation, post-shock wave behavior, and provide comparison with analytical theory. The generation of potential vorticity at the shock is computed analytically and is subsequently verified by simulations and used to pinpoint the shock location. We confirm the theoretical relation between the shocking length and the planet mass (including the effect of the equation of state), and the post-shock decay of the angular momentum flux carried by the wave. The post-shock evolution of the wave profile is explored, and we quantitatively confirm its convergence to the theoretically expected N-wave shape. The accuracy of various numerical algorithms used to compute the nonlinear wave evolution is also investigated: we find that higher order spatial reconstruction and high resolution are crucial for capturing the shock formation correctly.



قيم البحث

اقرأ أيضاً

The tidal perturbation of embedded protoplanets on their natal disks has been widely attributed to be the cause of gap-ring structures in sub-mm images of protoplanetary disks around T Tauri stars. Numerical simulations of this process have been used to propose scalings of characteristic dust gap width/gap-ring distance with respect to planet mass. Applying such scalings to analyze observed gap samples yields a continuous mass distribution for a rich population of hypothetical planets in the range of several Earth to Jupiter masses. In contrast, the conventional core-accretion scenario of planet formation predicts a bi-modal mass function due to 1) the onset of runaway gas accretion above sim20 Earth masses and 2) suppression of accretion induced by gap opening. Here we examine the dust disk response to the tidal perturbation of eccentric planets as a possible resolution of this paradox. Based on simulated gas and dust distributions, we show the gap-ring separation of Neptune-mass planets with small eccentricities might become comparable to that induced by Saturn-mass planets on circular orbits. This degeneracy may obliterate the discrepancy between the theoretical bi-modal mass distribution and the observed continuous gap width distribution. Despite damping due to planet-disk interaction, modest eccentricity may be sustained either in the outer regions of relatively thick disks or through resonant excitation among multiple super Earths. Moreover, the ring-like dust distribution induced by planets with small eccentricities is axisymmetric even in low viscosity environments, consistent with the paucity of vortices in ALMA images.
343 - He-Feng Hsieh 2020
Disc-driven planet migration is integral to the formation of planetary systems. In standard, gas-dominated protoplanetary discs, low-mass planets or planetary cores undergo rapid inwards migration and are lost to the central star. However, several re cent studies indicate that the solid component in protoplanetary discs can have a significant dynamical effect on disc-planet interaction, especially when the solid-to-gas mass ratio approaches unity or larger and the dust-on-gas drag forces become significant. As there are several ways to raise the solid abundance in protoplanetary discs, for example through disc winds and dust-trapping in pressure bumps, it is important to understand how planets migrate through a dusty environment. To this end, we study planet migration in dust-rich discs via a systematic set of high-resolution, two-dimensional numerical simulations. We show that the inwards migration of low-mass planets can be slowed down by dusty dynamical corotation torques. We also identify a new regime of stochastic migration applicable to discs with dust-to-gas mass ratios $gtrsim 0.3$ and particle Stokes numbers $gtrsim 0.03$. In these cases, disc-planet interaction leads to the continuous development of small-scale, intense dust vortices that scatter the planet, which can potentially halt or even reverse the inwards planet migration. We briefly discuss the observational implications of our results and highlight directions for future work.
In the innermost regions of protoplanerary discs, the solid-to-gas ratio can be increased considerably by a number of processes, including photoevaporative and particle drift. MHD disc models also suggest the existence of a dead-zone at $Rlesssim 10$ AU, where the regions close to the midplane remain laminar. In this context, we use two-fluid hydrodynamical simulations to study the interaction between a low-mass planet ($sim 1.7 ;{rm M_oplus}$) on a fixed orbit and an inviscid pebble-rich disc with solid-to-gas ratio $epsilonge 0.5$. For pebbles with Stokes numbers St=0.1, 0.5, multiple dusty vortices are formed through the Rossby Wave Instability at the planet separatrix. Effects due to gas drag then lead to a strong enhancement in the solid-to-gas ratio, which can increase by a factor of $sim 10^3$ for marginally coupled particles with St=0.5. As in streaming instabilities, pebble clumps reorganize into filaments that may plausibly collapse to form planetesimals. When the planet is allowed to migrate in a MMSN disc, the vortex instability is delayed due to migration but sets in once inward migration stops due a strong positive pebble torque. Again, particle filaments evolving in a gap are formed in the disc while the planet undergoes an episode of outward migration. Our results suggest that vortex instabilities triggered by low-mass planets could play an important role in forming planetesimals in pebble-rich, inviscid discs, and may significantly modify the migration of low-mass planets. They also imply that planetary dust gaps may not necessarily contain planets if these migrated away.
Recent ALMA observations revealed concentric annular structures in several young class-II objects. In an attempt to produce the rings and gaps in some of these systems, they have been modeled numerically with a single embedded planet assuming a local ly isothermal equation of state. This is often justified by observations targeting the irradiation-dominated outer regions of disks (approximately 100 au). We test this assumption by conducting hydrodynamics simulations of embedded planets in thin locally isothermal and radiative disks that mimic the systems HD 163296 and AS 209 in order to examine the effect of including the energy equation in a seemingly locally isothermal environment as far as planet-disk interaction is concerned. We find that modeling such disks with an ideal equation of state makes a difference in terms of the number of produced rings and the spiral arm contrast in the disk. Locally isothermal disks produce sharper annular or azimuthal features and overestimate a single planets gap-opening capabilities by producing multiple gaps. In contrast, planets in radiative disks carve a single gap for typical disk parameters. Consequently, for accurate modeling of planets with semimajor axes up to about 100 au, radiative effects should be taken into account even in seemingly locally isothermal disks. In addition, for the case of AS 209, we find that the primary gap is significantly different between locally isothermal and radiative models. Our results suggest that multiple planets are required to explain the ring-rich structures in such systems.
116 - Anders Johansen , 2010
We present high-resolution computer simulations of dust dynamics and planetesimal formation in turbulence generated by the magnetorotational instability. We show that the turbulent viscosity associated with magnetorotational turbulence in a non-strat ified shearing box increases when going from 256^3 to 512^3 grid points in the presence of a weak imposed magnetic field, yielding a turbulent viscosity of $alphaapprox0.003$ at high resolution. Particles representing approximately meter-sized boulders concentrate in large-scale high-pressure regions in the simulation box. The appearance of zonal flows and particle concentration in pressure bumps is relatively similar at moderate (256^3) and high (512^3) resolution. In the moderate-resolution simulation we activate particle self-gravity at a time when there is little particle concentration, in contrast with previous simulations where particle self-gravity was activated during a concentration event. We observe that bound clumps form over the next ten orbits, with initial birth masses of a few times the dwarf planet Ceres. At high resolution we activate self-gravity during a particle concentration event, leading to a burst of planetesimal formation, with clump masses ranging from a significant fraction of to several times the mass of Ceres. We present a new domain decomposition algorithm for particle-mesh schemes. Particles are spread evenly among the processors and the local gas velocity field and assigned drag forces are exchanged between a domain-decomposed mesh and discrete blocks of particles. We obtain good load balancing on up to 4096 cores even in simulations where particles sediment to the mid-plane and concentrate in pressure bumps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا