The image of physics is connected with simple mechanical deterministic events: that an apple always falls down, that force equals mass times acceleleration. Indeed, applications of such concept to social or historical problems go back two centuries (population growth and stabilisation, by Malthus and by Verhulst) and use differential equations, as recently revierwed by Vitanov and Ausloos [2011]. However, since even todays computers cannot follow the motion of all air molecules within one cubic centimeter, the probabilistic approach has become fashionable since Ludwig Boltzmann invented Statistical Physics in the 19th century. Computer simulations in Statistical Physics deal with single particles, a method called agent-based modelling in fields which adopted it later. Particularly simple are binary models where each particle has only two choices, called spin up and spin down by physicists, bit zero and bit one by computer scientists, and voters for the Republicans or for the Democrats in American politics (where one human is simulated as one particle). Neighbouring particles may influence each other, and the Ising model of 1925 is the best-studied example of such models. This text will explain to the reader how to program the Ising model on a square lattice (in Fortran language); starting from there the readers can build their own computer programs. Some applications of Statistical Physics outside the natural sciences will be listed.