ترغب بنشر مسار تعليمي؟ اضغط هنا

Bursting Activity in a High-Mass Star-Forming Region G33.64-0.21 Observed with the 6.7 GHz Methanol Maser

145   0   0.0 ( 0 )
 نشر من قبل Koichiro Sugiyama
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of bursts of 6.7 GHz methanol maser emission in a high-mass star-forming region, G33.64-0.21. One of the spectral components of the maser in this source changed its flux density by 7 times that of the previous day, and it decayed with a timescale of 5 days. The burst occurred repeatedly in the spectral component, and no other components showed such variability. A VLBI observation with the Japanese VLBI Network (JVN) showed that the burst location was at the southwest edge of a spatial distribution, and the bursting phenomenon occurred in a region much smaller than 70 AU. We suggest an impulsive energy release like a stellar flare as a possible mechanism for the burst. These results imply that 6.7 GHz methanol masers could be a useful new probe for studying bursting activity in the process of star formation of high-mass YSOs with a high-resolution of AU scale.



قيم البحث

اقرأ أيضاً

We report on EVN imaging of the 6.7 GHz methanol maser emission from the candidate high-mass protostar G23.657-0.127. The masers originate in a nearly circular ring of 127 mas radius and 12 mas width. The ring structure points at a central exciting o bject which characteristics are typical for a young massive star; its bolometric luminosity is estimated to be <3.2*10^4 L_sun and <1.2*10^5 L_sun for near (5.1 kpc) and far (10.5 kpc) kinematic distances, respectively. However, the spatial geometry of the underlying maser region remains ambiguous. We consider scenarios in which the methanol masers originate in a spherical bubble or in a rotating disc seen nearly face-on.
143 - K. Sugiyama , K. Fujisawa , A. Doi 2013
We have measured the internal proper motions of the 6.7 GHz methanol masers associated with Cepheus A (Cep A) HW2 using Very Long Baseline Interferometery (VLBI) observations. We conducted three epochs of VLBI monitoring observations of the 6.7 GHz m ethanol masers in Cep A-HW2 with the Japanese VLBI Network (JVN) over the period between 2006-2008. In 2006, we were able to use phase-referencing to measure the absolute coordinates of the maser emission with an accuracy of a few milliarcseconds. We compared the maser distribution with other molecular line observations that trace the rotating disk. We measured the internal proper motions for 29 methanol maser spots, of which 19 were identified at all three epochs and the remaining ten at only two epochs. The magnitude of proper motions ranged from 0.2 to 7.4 km/s, with an average of 3.1 km/s. Although there are large uncertainties in the observed internal proper motions of the methanol maser spots in Cep A, they are well fitted by a disk that includes both rotation and infall velocity components. The derived rotation and infall velocities at the disk radius of 680 au are 0.5 +- 0.7 and 1.8 +- 0.7 km/s, respectively. Assuming that the modeled disk motion accurately represents the accretion disk around the Cep A-HW2 high-mass YSO, we estimated the mass infall rate to be 3 x 10^{-4} n_8 Msun/yr (n_8 is the gas volume density in units of 10^{8} cm^{-3}). The combination of the estimated mass infall rate and the magnitude of the fitted infall velocity suggests that Cep A-HW2 is at an evolutionary phase of active gas accretion from the disk onto the central high-mass YSO. The infall momentum rate is estimated to be 5 x 10^{-4} n_8 Msun/yr km/s, which is larger than the estimated stellar radiation pressure of the HW2 object, supporting the hypothesis that this object is in an active gas accretion phase.
We have detected periodic flares of the 6.7 GHz methanol maser from an intermediate-mass star-forming region IRAS22198+6336. The maser was monitored daily in 2011, 2012, and 2013. Six flares were observed with a period of 34.6 days. The variation pat tern is intermittent, and the flux ratio of the flaring and the quiescent states exceeds 30. Such intermittent variation with the short period uniquely characterizes the variation of the IRAS22198+6336 maser. At least five spectral components were identified. The spectral components varied almost synchronously, but their peak times differed by 1.8 days. These characteristics can be explained by the colliding-wind binary model.
Intriguing work on observations of 4.83 GHz formaldehyde (H2CO) absorptions and 4.87 GHz H110a radio recombination lines (RRLs) towards 6.7 GHz methanol (CH3OH) maser sources is presented. Methanol masers provide ideal sites to probe the earliest sta ges of massive star formation, while 4.8 GHz formaldehyde absorptions are accurate probes of physical conditions in dense $(10^{3} - 10^{5} cm^{-3})$ and low temperature molecular clouds towards massive star forming regions. The work is aimed at studying feature similarities between the formaldehyde absorptions and the methanol masers so as to expand knowledge of events and physical conditions in massive star forming regions. A total of 176 methanol maser sources were observed for formaldehyde absorptions, and formaldehyde absorptions were detected 138 of them. 53 of the formaldehyde absorptions were newly detected. We noted a poor correlation between the methanol and formaldehyde intensities, an indication that the signals (though arise from about the same regions) are enhanced by different mechanisms. Our results show higher detection rates of the formaldehyde lines for sources with stronger methanol signals. The strongest formaldehyde absorptions were associated with IRAS sources and IRDCs that have developed HII regions, and that do not have EGOs.
Methanol masers at 6.7 GHz are the brightest of class II methanol masers and have been found exclusively towards massive star forming regions. These masers can thus be used as a unique tool to probe the early phases of massive star formation. We pres ent here a study of the spectral energy distributions of 320 6.7 GHz methanol masers chosen from the MMB catalogue, which fall in the Hi-GAL range ($|l| le 60^{circ}$, $|b| le 1^{circ}$). The spectral energy distributions are constructed from $870 - 70~mu$m using data from the ATLASGAL and Hi-GAL surveys. The emission from cold dust is modelled by a single grey body component fit. We estimate the clump properties such as mass, FIR luminosity and column density using the best fit parameters of the SED fits. Considering the Kauffman criteria for massive star formation, we find that all but a few maser hosts have the potential to harbour at least one high mass star. The physical properties of the methanol maser hosts are also discussed. The evolutionary stages of 6.7 GHz maser sources, explored using the mass luminosity diagram, suggests that they are predominantly associated with high mass stars with the majority being in the accretion phase. However, we observe a small number of sources that could possibly be related to intermediate or low-mass stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا