ترغب بنشر مسار تعليمي؟ اضغط هنا

Ising model with spins S=1/2 and 1 on directed and undirected Erdos-Renyi random graphs

118   0   0.0 ( 0 )
 نشر من قبل Francisco Lima
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using Monte Carlo simulations we study the Ising model with spin S=1/2 and 1 on {it directed} and {it undirected} Erdos-Renyi (ER) random graphs, with $z$ neighbors for each spin. In the case with spin S=1/2, the {it undirected} and {it directed} ER graphs present a spontaneous magnetization in the universality class of mean field theory, where in both {it directed} and {it undirected} ER graphs the model presents a spontaneous magnetization at $p = z/N$ ($z=2, 3, ...,N$), but no spontaneous magnetization at $p = 1/N$ which is the percolation threshold. For both {it directed} and {it undirected} ER graphs with spin S=1 we find a first-order phase transition for z=4 and 9 neighbors.



قيم البحث

اقرأ أيضاً

Through Monte Carlo Simulation, the well-known majority-vote model has been studied with noise on directed random graphs. In order to characterize completely the observed order-disorder phase transition, the critical noise parameter $q_c$, as well as the critical exponents $beta/nu$, $gamma/nu$ and $1/nu$ have been calculated as a function of the connectivity $z$ of the random graph.
The zero-temperature Glauber dynamics is used to investigate the persistence probability $P(t)$ in the Potts model with $Q=3,4,5,7,9,12,24,64, 128$, $256, 512, 1024,4096,16384 $,..., $2^{30}$ states on {it directed} and {it undirected} Barabasi-Alber t networks and Erdos-Renyi random graphs. In this model it is found that $P(t)$ decays exponentially to zero in short times for {it directed} and {it undirected} Erdos-Renyi random graphs. For {it directed} and {it undirected} Barabasi-Albert networks, in contrast it decays exponentially to a constant value for long times, i.e, $P(infty)$ is different from zero for all $Q$ values (here studied) from $Q=3,4,5,..., 2^{30}$; this shows blocking for all these $Q$ values. Except that for $Q=2^{30}$ in the {it undirected} case $P(t)$ tends exponentially to zero; this could be just a finite-size effect since in the other blocking cases you may have only a few unchanged spins.
We investigate the critical properties of the Ising model in two dimensions on {it directed} small-world lattice with quenched connectivity disorder. The disordered system is simulated by applying the Monte Carlo update heat bath algorithm. We calcul ate the critical temperature, as well as the critical exponents $gamma/ u$, $beta/ u$, and $1/ u$ for several values of the rewiring probability $p$. We find that this disorder system does not belong to the same universality class as the regular two-dimensional ferromagnetic model. The Ising model on {it directed} small-world lattices presents in fact a second-order phase transition with new critical exponents which do not dependent of $p$, but are identical to the exponents of the Ising model and the spin-1 Blume-Capel model on {it directed} small-world network.
Graph shotgun assembly refers to the problem of reconstructing a graph from a collection of local neighborhoods. In this paper, we consider shotgun assembly of ErdH{o}s-Renyi random graphs $G(n, p_n)$, where $p_n = n^{-alpha}$ for $0 < alpha < 1$. We consider both reconstruction up to isomorphism as well as exact reconstruction (recovering the vertex labels as well as the structure). We show that given the collection of distance-$1$ neighborhoods, $G$ is exactly reconstructable for $0 < alpha < frac{1}{3}$, but not reconstructable for $frac{1}{2} < alpha < 1$. Given the collection of distance-$2$ neighborhoods, $G$ is exactly reconstructable for $0 < alpha < frac{1}{2}$, but not reconstructable for $frac{3}{4} < alpha < 1$.
We check the existence of a spontaneous magnetisation of Ising and Potts spins on semi-directed Barabasi-Albert networks by Monte Carlo simulations. We verified that the magnetisation for different temperatures $T$ decays after a characteristic time $tau(T)$, which we extrapolate to diverge at positive temperatures $T_c(N)$ by a Vogel-Fulcher law, with $T_c(N)$ increasing logarithmically with network size $N$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا