ﻻ يوجد ملخص باللغة العربية
Using Monte Carlo simulations we study the Ising model with spin S=1/2 and 1 on {it directed} and {it undirected} Erdos-Renyi (ER) random graphs, with $z$ neighbors for each spin. In the case with spin S=1/2, the {it undirected} and {it directed} ER graphs present a spontaneous magnetization in the universality class of mean field theory, where in both {it directed} and {it undirected} ER graphs the model presents a spontaneous magnetization at $p = z/N$ ($z=2, 3, ...,N$), but no spontaneous magnetization at $p = 1/N$ which is the percolation threshold. For both {it directed} and {it undirected} ER graphs with spin S=1 we find a first-order phase transition for z=4 and 9 neighbors.
Through Monte Carlo Simulation, the well-known majority-vote model has been studied with noise on directed random graphs. In order to characterize completely the observed order-disorder phase transition, the critical noise parameter $q_c$, as well as
The zero-temperature Glauber dynamics is used to investigate the persistence probability $P(t)$ in the Potts model with $Q=3,4,5,7,9,12,24,64, 128$, $256, 512, 1024,4096,16384 $,..., $2^{30}$ states on {it directed} and {it undirected} Barabasi-Alber
We investigate the critical properties of the Ising model in two dimensions on {it directed} small-world lattice with quenched connectivity disorder. The disordered system is simulated by applying the Monte Carlo update heat bath algorithm. We calcul
Graph shotgun assembly refers to the problem of reconstructing a graph from a collection of local neighborhoods. In this paper, we consider shotgun assembly of ErdH{o}s-Renyi random graphs $G(n, p_n)$, where $p_n = n^{-alpha}$ for $0 < alpha < 1$. We
We check the existence of a spontaneous magnetisation of Ising and Potts spins on semi-directed Barabasi-Albert networks by Monte Carlo simulations. We verified that the magnetisation for different temperatures $T$ decays after a characteristic time