ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution, nucleosynthesis and yields of low mass AGB stars at different metallicities (II): the FRUITY database

252   0   0.0 ( 0 )
 نشر من قبل Sergio Cristallo
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using updated stellar low mass stars models, we can systematically investigate the nucleosynthesis processes occurring in AGB stars, when these objects experience recurrent thermal pulses and third dredge-up episodes. In this paper we present the database dedicated to the nucleosynthesis of AGB stars: the FRUITY (FRANEC Repository of Updated Isotopic Tables & Yields) database. An interactive web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 < M/Msun < 3.0 and metallicities 1e-3 < Z < 2e-2, is discussed here. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parametrization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the third dredge-up efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find a good agreement with observations.



قيم البحث

اقرأ أيضاً

We present a new set of models for intermediate mass AGB stars (4.0, 5.0 and, 6.0 Msun) at different metallicities (-2.15<=Fe/H]<=+0.15). This integrates the existing set of models for low mass AGB stars (1.3<=M/M<=3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the Main Sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. The latter is due to the fact that the interpulse phases are short and, then, Thermal Pulses are weak. Moreover, the high temperature at the base of the convective envelope prevents it to deeply penetrate the radiative underlying layers. Depending on the initial stellar mass, the heavy elements nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the ean~reaction, which is efficiently activated during Thermal Pulses. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the weight that intermediate mass models have on the carbon stars luminosity function. Finally, we present the upgrade of the FRUITY web interface, now also including the physical quantities of the TP-AGB phase of all the models included in the database (ph-FRUITY).
We present and show the features of the FRUITY database, an interactive web-based interface devoted to the nucleosynthesis in AGB stars. We describe the current available set of AGB models (largely expanded with respect to the original one) with mass es in the range 1.3<=M/M_SUN<=3.0 and metallicities -2.15<=[Fe/H]<=+0.15. We illustrate the details of our s-process surface distributions and we compare our results to observations. Moreover, we introduce a new set of models where the effects of rotation are taken into account. Finally, we shortly describe next planned upgrades.
327 - M.L. Pumo , L. Siess , 2008
Based on evolutionary computations of 90 stellar models, we have analysed the impact of initial composition and core overshooting on the post-He-burning evolution and the associated nucleosynthesis of Super-AGB stars, pointing particular attention on the C-burning phase. Moreover the possible link between the transition masses $M_{up}$, $M_{N}$ and $M_{mas}$ (defined as the critical initial mass above which C-burning ignites, the minimum initial mass for an electron-capture supernova and the minimum initial mass for the completion of all the nuclear burning phases respectively) and the properties of the core during the core He-burning phase is also briefly discussed.
We present post process neutron capture computations for Asymptotic Giant Branch stars of 1.5 to 3 Mo and metallicities -1.3 to 0.1. The reference stellar models are computed with the FRANEC code, using the Schwarzschilds criterion for convection. Mo tivations for this choice are outlined. We assume that MHD processes induce the penetration of protons below the convective boundary, when the third dredge up occurs. There, the 13C(alpha,n)16O neutron source can subsequently operate, merging its effects with those of the 22Ne(alpha,n)25Mg reaction, activated at the temperature peaks characterizing AGB stages. This work has three main scopes. i) We provide a grid of abundance yields, as produced through our MHD mixing scheme, uniformly sampled in mass and metallicity. From it, we deduce that the solar s process distribution, as well as the abundances in recent stellar populations, can be accounted for, without the need of the extra primary like contributions suggested in the past. ii) We formulate analytical expressions for the mass of the 13C pockets generated, in order to allow easy verification of our findings. iii) We compare our results with observations of evolved stars and with isotopic ratios in presolar SiC grains, also noticing how some flux tubes should survive turbulent disruption, carrying C rich materials into the winds even when the envelope is O rich. This wind phase is approximated through the G component of AGB s processing. We conclude that MHD induced mixing is adequate to drive slow neutron capture phenomena accounting for observations. Our prescriptions should permit its inclusion into current stellar evolutionary codes.
We present the abundance analyses of 7 Carbon enhanced metal-poor (CEMP) stars to understand the origin of carbon in them. We used high-resolution optical spectra to derive abundances of various elements. We also used low-resolution Near-Infrared (NI R) spectra to derive the abundance of O and 12C/13C from the CO molecular band and compared their values with those derived from high-resolution optical spectra. We identified a good agreement between the values. Thus, in cool CEMP stars, the NIR observations complement the high-resolution optical observations to derive the oxygen abundance and the 12C/13C ratio. This enables us to probe fainter cool CEMP stars using NIR spectroscopy. C, N, O abundances of all the program stars in this study show abundances that are consistent with binary mass transfer from a low-mass low-metallicity Asymptotic Giant Branch (AGB) companion which is further supported by the presence of enhancement in neutron-capture elements and detection of radial velocity variation. One of the stars show abundance patterns similar to a CEMP-s star whereas the abundance pattern of the rest of the stars satisfy the criteria required to classify them as CEMP-r/s stars. The sub-classification of some of the stars studied here is revisited. The abundance of neutron capture elements in these CEMP-r/s stars resembles to that of i-process models where proton ingestion episodes in the companion low-mass low-metallicity AGB stars produce the necessary neutron density required for the onset of i-process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا