ترغب بنشر مسار تعليمي؟ اضغط هنا

The effects of competing magnetic interactions on the electronic properties of CuCrS2 and CuCrSe2

95   0   0.0 ( 0 )
 نشر من قبل Girish Tewari Chandra
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detail study of the electrical resistivity, thermoelectric power, magnetic susceptibility c{hi} and the heat capacity CP in antiferromagnetic layered compounds CuCrS2 and CuCrSe2 at 2K-300K. CuCrS2 showed sharp cusp in c{hi} and a lambda-like peak in CP at TN = 40K as expected for a 3D- magnetic order, while more metallic CuCrSe2 showed a rounded maximum in c{hi} and the absence of sharp peak in CP around 55K, the CP at low temperature has T2-dependence in it which suggests the absence of the long range order and 2D spin-liquid like excitation in its magnetic phase. We explain the absence of the magnetic order in the selenide compound as resulting from the effective competition of the magnetic interactions from the distant neighbors; the indirect exchange among the intra-layer Cr-atoms increases in more metallic selenide compound which competes with the direct antiferromagnetic interactions between the Cr-atoms of different layers which destroys the long range magnetic order.



قيم البحث

اقرأ أيضاً

We have studied NpPdSn by means of the heat capacity, electrical resistivity, Seebeck and Hall effect, $^{237}$Np M{o}ssbauer spectroscopy, and neutron diffraction measurements in the temperature range 2-300 K and under magnetic fields up to 14 T. Np PdSn orders antiferromagnetically below the Neel temperature $T_N$ = 19 K and shows localized magnetism of Np$^{3+}$ ion with a a doubly degenerate ground state. In the magnetic state the electrical resistivity and heat capacity are characterized by electron-magnon scattering with spin-waves spectrum typical of anisotropic antiferromagnets. An enhanced Sommerfeld coefficient and typical behavior of magnetorestistivity, Seebeck and Hall coefficients are all characteristic of systems with strong electronic correlations. The low temperature antiferromagnetic state of NpPdSn is verified by neutron diffraction and $^{237}$Np M{o}ssbauer spectroscopy and possible magnetic structures are discussed.
Magnetization and heat capacity measurements of ternary rare earth intermetallic compound GdNiAl3 demonstrate para to ferromagnetic transition at Tc=165.5K. In addition multiple short range magnetic transitions observed below Tc are suggestive of com peting interactions in this compound. As a result of this a weak Griffiths phase type behaviour is observed in the paramagnetic region. This complex behaviour is rather supported by the random orientation of Ni centered tricapped trigonal prisms with additional Al atoms in the structure. Heat capacity and resistivity data display an interesting peak at 72 K, which is highly unaffected by magnetic fields up to 90KOe.
In this paper, we present a Kane-Mele model in the presence of magnetic field and next nearest neighbors hopping amplitudes for investigations the electronic and optical properties of monolayer Germanene. Specially, we address the dynamical conductiv ity of the structure as a function of photon frequency and in the presence of magnetic field and spin-orbit coupling at finite temperature. Using linear response theory and Greens function approach, the frequency dependence of optical conductivity has been obtained in the context of Kane-Mele model Hamiltonian. Our results show a finite Drude response at low frequency at non zero value for magnetic field in the presence of spin-orbit coupling. However Drude weight gets remarkable amount in the presence of electron doping. The thermal conductivity and specific heat increase with increasing the temperature at low amounts of temperature due to the increasing of thermal energy of charge carriers and excitation of them to the conduction bands. The results for Seebeck coefficient show the sign of thermopower is negative in the presence of spin-orbit coupling. Also we have studied the temperature dependence of electrical conductivity of Germanene monolayer due to both spin orbit coupling and magnetic field factors in details.
We have studied polycrystalline Yb4LiGe4, a ternary variant of the R5T4 family of layered compounds characterized by a very strong coupling between the magnetic and crystallographic degrees of freedom. The system is mixed valent, with non-magnetic Yb 2+ and magnetic Yb3+ present, and is characterized by coexisting ferromagnetic and antiferromagnetic correlations. We present measurements of resistivity, AC-susceptibility, specific heat, and muon spin relaxation (muSR), below 1 K. The low temperature measurements suggest a transition to a mesoscopically inhomogeneous magnetically ordered state below 2 K characterized by fluctuations well below the ordering temperature. This unusual state is believed to result from the enhanced two-dimensionality produced by Li substitution and frustration effects inherent in the Yb sub-lattice geometry.
The electronic structure and magnetic properties of a single Fe adatom on a CuN surface have been studied using density functional theory in the local spin density approximation (LSDA), the LSDA+U approach and the local density approximation plus dyn amical mean-field theory (LDA+DMFT). The impurity problem in LDA+DMFT is solved through exact diagonalization and in the Hubbard-I approximation. The comparison of the one-particle spectral functions obtained from LSDA, LSDA+U and LDA+DMFT show the importance of dynamical correlations for the electronic structure of this system. Most importantly, we focused on the magnetic anisotropy and found that neither LSDA, nor LSDA+U can explain the measured, high values of the axial and transverse anisotropy parameters. Instead, the spin excitation energies obtained from our LDA+DMFT approach with exact diagonalization agree significantly better with experimental data. This affirms the importance of treating fluctuating magnetic moments through a realistic many-body treatment when describing this class of nano-magnetic systems. Moreover, it facilitates insight to the role of the hybridization with surrounding orbitals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا