ترغب بنشر مسار تعليمي؟ اضغط هنا

The Near-Infrared Coronal Line Spectrum of 54 Nearby Active Galactic Nuclei

186   0   0.0 ( 0 )
 نشر من قبل Alberto Rodriguez-Ardila
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridge) The relationship between coronal line (CL) emission and nuclear activity in active galactic nuclei (AGNs) is analyzed, for the first time, based on NIR spectra. The 8 CLs studied, of Si, S, Fe, Al and Ca elements and corresponding to ionization potentials (IP) in the range 125-450 eV, are detected in 67% (36 AGNs) of the sample. The four most frequent CLs - [SiVI] 19630AA, [SVIII] 9913AA, [SIX] 12520AA and [SiX] 14320AA, - display a narrow range in luminosity, with most lines located in the interval logL 39-40 erg/s. We found that the non-detection is largely associated with either a lost of spatial resolution or increasing object distance. Yet, there are AGNs where the lack of CLs may be genuine and reflect an AGN ionising continuum lacking photons below a few keV. The FWHM of the lines profiles increases with increasing IP up to energies around 300 eV, where a maximum in the FWHM is reached. For higher IP lines, the FWHM remains nearly constant or decreases with increasing IP. We ascribe this effect to an increasing density environment as we approach to the innermost regions of the AGN, where densities above the critical density of the CLs with IP larger than 300 eV are reached. This sets a strict range limit for the density in the boundary region between the narrow and the broad region of 10^8 - 10^9 cm^{-3}. A relationship between the luminosity of the coronal lines and that of the soft and hard X-ray emission and the soft X-ray photon index is observed: the coronal emission becomes stronger with both increasing x-ray emission (soft and hard) and steeper X-ray photon index. Thus, photoionization appears as the dominant excitation mechanism. These trends hold when considering Type 1 sources only; they get weaker or vanish when including Type 2 sources, very likely because the X-ray emission measured in the later is not the intrinsic ionising continuum.



قيم البحث

اقرأ أيضاً

350 - Hermine Landt 2011
We use quasi-simultaneous near-infrared (near-IR) and optical spectroscopy from four observing runs to study the continuum around 1 micron in 23 well-known broad-emission line active galactic nuclei (AGN). We show that, after correcting the optical s pectra for host galaxy light, the AGN continuum around this wavelength can be approximated by the sum of mainly two emission components, a hot dust blackbody and an accretion disc. The accretion disc spectrum appears to dominate the flux at ~1 micron, which allows us to derive a relation for estimating AGN black hole masses based on the near-IR virial product. This result also means that a near-IR reverberation programme can determine the AGN state independent of simultaneous optical spectroscopy. On average we derive hot dust blackbody temperatures of ~1400 K, a value close to the sublimation temperature of silicate dust grains, and relatively low hot dust covering factors of ~7%. Our preliminary variability studies indicate that in most sources the hot dust emission responds to changes in the accretion disc flux with the expected time lag, however, a few sources show a behaviour that can be attributed to dust destruction.
196 - Hermine Landt 2011
Black hole masses for samples of active galactic nuclei (AGN) are currently estimated from single-epoch optical spectra. In particular, the size of the broad-line emitting region needed to compute the black hole mass is derived from the optical or ul traviolet continuum luminosity. Here we consider the relationship between the broad-line region size, R, and the near-infrared (near-IR) AGN continuum luminosity, L, as the near-IR continuum suffers less dust extinction than at shorter wavelengths and the prospects for separating the AGN continuum from host-galaxy starlight are better in the near-IR than in the optical. For a relationship of the form R propto L^alpha, we obtain for a sample of 14 reverberation-mapped AGN a best-fit slope of alpha=0.5+/-0.1, which is consistent with the slope of the relationship in the optical band and with the value of 0.5 naively expected from photoionisation theory. Black hole masses can then be estimated from the near-IR virial product, which is calculated using the strong and unblended Paschen broad emission lines (Pa alpha or Pa beta).
159 - Hermine Landt 2007
We present high quality (high signal-to-noise ratio and moderate spectral resolution) near-infrared (near-IR) spectroscopic observations of 23 well-known broad-emission line active galactic nuclei (AGN). Additionally, we obtained simultaneous (within two months) optical spectroscopy of similar quality. The near-IR broad emission line spectrum of AGN is dominated by permitted transitions of hydrogen, helium, oxygen, and calcium, and by the rich spectrum of singly-ionized iron. In this paper we present the spectra, line identifications and measurements, and address briefly some of the important issues regarding the physics of AGN broad emission line regions. In particular, we investigate the excitation mechanism of neutral oxygen and confront for the first time theoretical predictions of the near-IR iron emission spectrum with observations.
We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs) and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGN; Lbol lesssim 10^42 erg/sec). Infrared (IR) observations may advance our understanding of the accretion flows in LLAGN, the fate of the obscuring torus at low accretion rates, and, perhaps, the star formation histories of these objects. However, while comprehensively studied in higher-luminosity Seyferts and quasars, the nuclear IR properties of LLAGN have not yet been well-determined. We separate the present LLAGN sample into three categories depending on their Eddington ratio and radio emission, finding different IR characteristics for each class. (I) At the low-luminosity, low-Eddington ratio (log Lbol/LEdd < -4.6) end of the sample, we identify host-dominated galaxies with strong polycyclic aromatic hydrocarbon bands that may indicate active (circum-)nuclear star formation. (II) Some very radio-loud objects are also present at these low Eddington ratios. The IR emission in these nuclei is dominated by synchrotron radiation, and some are likely to be unobscured type 2 AGN that genuinely lack a broad line region. (III) At higher Eddington ratios, strong, compact nuclear sources are visible in the MIR images. The nuclear SEDs of these galaxies are diverse; some resemble typical Seyfert nuclei, while others lack a well-defined MIR dust bump. Strong silicate emission is present in many of these objects. We speculate that this, together with high ratios of silicate strength to hydrogen column density, could suggest optically thin dust and low dust-to-gas ratios, in accordance with model predictions that LLAGN do not host a Seyfert-like obscuring torus.
178 - Ximena Mazzalay 2010
We present an analysis of STIS/HST optical spectra of a sample of ten Seyfert galaxies aimed at studying the structure and physical properties of the coronal-line region (CLR). The high-spatial resolution provided by STIS allowed us to resolve the CL R and obtain key information about the kinematics of the coronal-line gas, measure directly its spatial scale, and study the mechanisms that drive the high-ionisation lines. We find CLRs extending from just a few parsecs (~10 pc) up to 230 pc in radius, consistent with the bulk of the coronal lines (CLs) originating between the BLR and NLR, and extending into the NLR in the case of [FeVII] and [NeV] lines. The CL profiles strongly vary with the distance to the nucleus. We observed line splitting in the core of some of the galaxies. Line peak shifts, both red- and blue-shifts, typically reached 500 km/s, and even higher velocities (1000 km/s) in some of the galaxies. In general, CLs follow the same pattern of rotation curves as low-ionisation lines like [OIII]. From a direct comparison between the radio and the CL emission we find that neither the strength nor the kinematics of the CLs scale in any obvious and strong way with the radio jets. Moreover, the similarity of the flux distributions and kinematics of the CLs and low-ionisation lines, the low temperatures derived for the gas, and the success of photoionisation models to reproduce, within a factor of few, the observed line ratios, point towards photoionisation as the main driving mechanism of CLs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا