ﻻ يوجد ملخص باللغة العربية
The noncentrosymmetric Half Heusler compound YPtBi exhibits superconductivity below a critical temperature T_c = 0.77 K with a zero-temperature upper critical field H_c2(0) = 1.5 T. Magnetoresistance and Hall measurements support theoretical predictions that this material is a topologically nontrivial semimetal having a surprisingly low positive charge carrier density of 2 x 10^18 cm^-3. Unconventional linear magnetoresistance and beating in Shubnikov-de Haas oscillations point to spin-orbit split Fermi surfaces. The sensitivity of magnetoresistance to surface roughness suggests a possible contribution from surface states. The combination of noncentrosymmetry and strong spin-orbit coupling in YPtBi presents a promising platform for the investigation of topological superconductivity.
Chemical doping of topological materials may provide a possible route for realizing topological superconductivity. However, all such cases known so far are based on chalcogenides. Here we report the discovery of superconductivity induced by Re doping
Recently monolayer jacutingaite (Pt2HgSe3), a naturally occurring exfoliable mineral, discovered in Brazil in 2008, has been theoretically predicted as a candidate quantum spin Hall system with a 0.5 eV band gap, while the bulk form is one of only a
NaAlSi is an sp electron superconductor crystallizing in a layered structure of the anti-PbFCl type with a relatively high transition temperature Tc of ~7 K. Recent electronic state calculations revealed the presence of topological nodal lines in the
Topological superconductivity with Majorana bound states, which are critical to implement nonabelian quantum computation, may be realized in three-dimensional semimetals with nontrivial topological feature, when superconducting transition occurs in t
Atomic manipulation and interface engineering techniques have provided a novel approach to custom-designing topological superconductors and the ensuing Majorana zero modes, representing a new paradigm for the realization of topological quantum comput