ﻻ يوجد ملخص باللغة العربية
Evaporation/condensation transition of the Potts model on square lattice is numerically investigated by the Wang-Landau sampling method. Intrinsically system size dependent discrete transition between supersaturation state and phase-separation state is observed in the microcanonical ensemble by changing constrained internal energy. We calculate the microcanonical temperature, as a derivative of microcanonical entropy, and condensation ratio, and perform a finite size scaling of them to indicate clear tendency of numerical data to converge to the infinite size limit predicted by phenomenological theory for the isotherm lattice gas model.
The continuous ferromagnetic-paramagnetic phase transition in the two-dimensional Ising model has already been excessively studied by conventional canonical statistical analysis in the past. We use the recently developed generalized microcanonical in
In a statistical ensemble with $M$ microstates, we introduce an $M times M$ correlation matrix with the correlations between microstates as its elements. Using eigenvectors of the correlation matrix, we can define eigen microstates of the ensemble. T
We studied the non-equilibrium dynamics of the q-state Potts model in the square lattice, after a quench to sub-critical temperatures. By means of a continuous time Monte Carlo algorithm (non-conserved order parameter dynamics) we analyzed the long t
The thermodynamics of the discrete nonlinear Schrodinger equation in the vicinity of infinite temperature is explicitly solved in the microcanonical ensemble by means of large-deviation techniques. A first-order phase transition between a thermalized
We develop a scaling theory for the finite-size critical behavior of the microcanonical entropy (density of states) of a system with a critically-divergent heat capacity. The link between the microcanonical entropy and the canonical energy distributi