ﻻ يوجد ملخص باللغة العربية
We report results from a combined analysis of solar neutrino data from all phases of the Sudbury Neutrino Observatory. By exploiting particle identification information obtained from the proportional counters installed during the third phase, this analysis improved background rejection in that phase of the experiment. The combined analysis resulted in a total flux of active neutrino flavors from 8B decays in the Sun of (5.25 pm 0.16(stat.)+0.11-0.13(syst.))times10^6 cm^{-2}s^{-1}. A two-flavor neutrino oscillation analysis yielded Deltam^2_{21} = (5.6^{+1.9}_{-1.4})times10^{-5} eV^2 and tan^2{theta}_{12}= 0.427^{+0.033}_{-0.029}. A three-flavor neutrino oscillation analysis combining this result with results of all other solar neutrino experiments and the KamLAND experiment yielded Deltam^2_{21} = (7.41^{+0.21}_{-0.19})times10^{-5} eV^2, tan^2{theta}_{12} = 0.446^{+0.030}_{-0.029}, and sin^2{theta}_{13} = (2.5^{+1.8}_{-1.5})times10^{-2}. This implied an upper bound of sin^2{theta}_{13} < 0.053 at the 95% confidence level (C.L.).
This paper details the solar neutrino analysis of the 385.17-day Phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of $^3$He proportional counters was installed in the heavy-water target to measure precisely the rate of
A search has been performed for neutrinos from two sources, the $hep$ reaction in the solar $pp$ fusion chain and the $ u_e$ component of the diffuse supernova neutrino background (DSNB), using the full dataset of the Sudbury Neutrino Observatory wit
The long baseline between the Earth and the Sun makes solar neutrinos an excellent test beam for exploring possible neutrino decay. The signature of such decay would be an energy-dependent distortion of the traditional survival probability which can
We present the most recent results from the two currently running solar neutrino experiments, Borexino at the Gran Sasso laboratory in Italy and SuperK at Kamioka mine in Japan. SuperK has released the most precise yet measurement of the 8B solar neu
A calibration source using gamma-rays from 16N (t_1/2 = 7.13 s) beta-decay has been developed for the Sudbury Neutrino Observatory (SNO) for the purpose of energy and other calibrations. The 16N is produced via the (n,p) reaction on 16O in the form o