ﻻ يوجد ملخص باللغة العربية
Quantum criticality is a central concept in condensed matter physics, but the direct observation of quantum critical fluctuations has remained elusive. Here we present an x-ray diffraction study of the charge density wave (CDW) in 2H-NbSe2 at high pressure and low temperature, where we observe a broad regime of order parameter fluctuations that are controlled by proximity to a quantum critical point. X-rays can track the CDW despite the fact that the quantum critical regime is shrouded inside a superconducting phase, and, in contrast to transport probes, allow direct measurement of the critical fluctuations of the charge order. Concurrent measurements of the crystal lattice point to a critical transition that is continuous in nature. Our results confirm the longstanding expectations of enhanced quantum fluctuations in low dimensional systems, and may help to constrain theories of the quantum critical Fermi surface.
Strange metal behavior is ubiquitous to correlated materials ranging from cuprate superconductors to bilayer graphene. There is increasing recognition that it arises from physics beyond the quantum fluctuations of a Landau order parameter which, in q
We analyze the quantum phase transition between a semimetal and a superfluid in a model of attractively interacting fermions with a linear dispersion. The quantum critical properties of this model cannot be treated by the Hertz-Millis approach since
Quantum critical points (QCPs) are widely accepted as a source of a diverse set of collective quantum phases of matter. A central question is how the order parameters of phases near a QCP interact and determine the fundamental character of the critic
Magnetic-field-induced phase transitions are investigated in the frustrated gapped quantum paramagnet Rb$_{2}$Cu$_{2}$Mo$_3$O$_{12}$ through dielectric and calorimetric measurements on single-crystal samples. It is clarified that the previously repor
In multi-band metals quasi-particles arising from different atomic orbitals coexist at a common Fermi surface. Superconductivity in these materials may appear due to interactions within a band (intra-band) or among the distinct metallic bands (inter-