ﻻ يوجد ملخص باللغة العربية
We report an unusual giant linear magnetostrictive effect in the ferrimagnet Gd$_{2/3}$Ca$_{1/3}$MnO$_3$ ($T_{c} approx$80 K). Remarkably, the magnetostriction, negative at high temperature ($T approx T_{c}$), becomes positive below 15 K when the magnetization of the Gd sublattice overcomes the magnetization of the Mn sublattice. A rather simple model where the magnetic energy competes against the elastic energy gives a good account of the observed results and confirms that Gd plays a crucial role in this unusual observation. Unlike previous works in manganites where only striction associated with 3$d$ Mn orbitals is considered, our results show that the lanthanide 4$f$ orbitals related striction can be very important too and it cannot be disregarded.
This paper has been withdrawn by authors.
With x-ray absorption spectroscopy we investigated the orbital reconstruction and the induced ferromagnetic moment of the interfacial Cu atoms in YBa$_2$Cu$_3$O$_{7}$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) and La$_{2-x}$Sr$_{x}$CuO$_4$/La$_{2/3}$Ca$
Due to the complex interplay of magnetic, structural, electronic, and orbital degrees of freedom, biaxial strain is known to play an essential role in the doped manganites. For coherently strained La(2/3)Ca(1/3)MnO(3) thin films grown on SrTiO(3) sub
With dc magnetisation and polarized neutron reflectometry we studied the ferromagnetic response of YBa$_2$Cu$_3$O$_7$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) multilayers that are grown with pulsed laser deposition. We found that whereas for certain g
Polycrystalline La$_{2/3}$Sr$_{1/3}$MnO$_{3}$ (LSMO) thin films were synthesized by pulsed laser ablation on single crystal (100) yttria-stabilized zirconia (YSZ) substrates to investigate the mechanism of magneto-transport in a granular manganite. D