ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic rays and the magnetic field in the nearby starburst galaxy NGC253 III. Helical magnetic fields in the nuclear outflow

147   0   0.0 ( 0 )
 نشر من قبل Volker Heesen
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Volker Heesen




اسأل ChatGPT حول البحث

Magnetic fields are a good tracer for gas compression by shock waves, which can be caused by interaction of star-formation driven outflows from individual star formation sites as described in the chimney model. We study the magnetic field structure in the central part of the nuclear starburst galaxy NGC 253 with spatial resolutions between 40 and 150 pc to detect any filamentary emission associated with the nuclear outflow. New VLA observations at 3 cm with 7.5 resolution were combined with archive data at 20 and 6 cm. We find filamentary radio continuum emission in a geometrical distribution that we interpret as the boundary of the northwestern nuclear outflow cone. The scaleheight of the continuum emission is 150+/-20 pc, regardless of the observing frequency. The equipartition magnetic field strength is 46+/-10 microG for the total field and 21+/-5 microG for the regular field in the filaments. The ordered magnetic field is aligned along the filaments, in agreement with amplification due to compression. The perpendicular diffusion coefficient across the filaments is kappa_perp = 1.5 x 10^28 cm^2 s^-1 E(GeV)^(0.5+/-0.7). In the SE part of the nuclear outflow cone the magnetic field is pointing away from the disc in form of a helix, with an azimuthal component increasing up to at least 1200 pc height, where it is about equal to the total component. The ordered magnetic field in the disc is anisotropic within a radius of 2.2 kpc. At larger radii, the large-scale field is regular and of even parity. The magnetic field is able to collimate the outflow, which can explain the observed small opening angle of ~26 degree. Due to angular momentum conservation, the field lines are frozen into the plasma and are wound up into a helix. Strong adiabatic losses of the cosmic-ray electrons can partly explain why the radio luminosity of the nucleus lies below the radio-FIR correlation.



قيم البحث

اقرأ أيضاً

165 - V. Heesen 2008
Using radio polarimetry we study the connection between the transport of cosmic rays (CRs), the three-dimensional magnetic field structure, and features of other ISM phases in the halo of NGC 253. We present a new sensitive radio continuum map of NGC 253 obtained from combined VLA and Effelsberg observations at lambda 6.2 cm. We find a prominent radio halo with a scaleheight of the thick radio disk of 1.7 kpc. The linear dependence between the local scaleheight of the vertical continuum emission and the cosmic ray electron (CRE) lifetime requires a vertical CR bulk speed of 270 km s^-1. The magnetic field structure of NGC 253 resembles an ``X-shaped configuration where the orientation of the large-scale magnetic field is plane-parallel only in the inner regions of the disk and at small distances from the galactic midplane. At larger galactocentric radii and further away from the midplane the vertical component becomes important. This is most clearly visible at the location of the ``radio spur southeast of the nucleus, where the magnetic field orientation is almost vertical. We made a simple model for the dominant toroidal (r,phi) magnetic field component using a spiral magnetic field with prescribed inclination and pitch angle. The residual poloidal (r,phi,z) magnetic field component which was revealed by subtracting the model from the observations shows a distinct ``X-shaped magnetic field orientation centered on the nucleus. The orientation angle of the poloidal magnetic field is consistent with a magnetic field transport described by the superposition of the vertical CR bulk speed and the rotation velocity. Hence, we propose a disk wind which transports cosmic rays, magnetic field, and (partially) ionized gas from the disk into the halo.
218 - Volker Heesen 2009
Radio halos require the coexistence of extra-planar cosmic rays and magnetic fields. Because cosmic rays are injected and accelerated by processes related to star formation in the disk, they have to be transported from the disk into the halo. A verti cal large-scale magnetic field can significantly enhance this transport. We observed NGC 253 using radio continuum polarimetry with the Effelsberg and VLA telescopes. The radio halo of NGC 253 has a dumbbell shape with the smallest vertical extension near the center. With an estimate for the electron lifetime, we measured the cosmic-ray bulk speed as 300+/-30 km/s which is constant over the extent of the disk. This shows the presence of a disk wind in NGC 253. We propose that the large-scale magnetic field is the superposition of a disk (r,phi) and a halo (r,z) component. The disk field is an inward-pointing spiral with even parity. The conical (even) halo field appears in projection as an X-shaped structure, as observed in other edge-on galaxies. Interaction by compression in the walls of the superbubbles may explain the observed alignment between the halo field and the lobes of hot Halpha- and soft X-ray emitting gas. The disk wind is a good candidate for the transport of small-scale helical fields, required for efficient dynamo action, and as a source for the neutral hydrogen observed in the halo.
We extend previous work modeling the Galactic magnetic field in the plane using synchrotron emission in total and polarised intensity. In this work, we include a more realistic treatment of the cosmic-ray electrons using the GALPROP propagation code optimized to match the existing high-energy data. This addition reduces the degeneracies in our previous analysis and when combined with an additional observed synchrotron frequency allows us to study the low-energy end of the cosmic-ray electron spectrum in a way that has not previously been done. For a pure diffusion propagation, we find a low-energy injection spectrum slightly harder than generally assumed; for J(E) propto E^{alpha}, we find {alpha} = -1.34 pm 0.12, implying a very sharp break with the spectrum above a few GeV. This then predicts a synchrotron brightness temperature spectral index, {beta}, on the Galactic plane that is -2.8 < {beta} < -2.74 below a few GHz and -2.98 < {beta} < -2.91 up to 23 GHz. We find that models including cosmic-ray re-acceleration processes appear to be incompatible with the synchrotron data.
The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filament s and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic ray propagation have largely overlooked intermittency, instead relying on Gaussian random magnetic fields. Using test particle simulations, we investigate cosmic ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.
We briefly review sources of cosmic rays, their composition and spectra as well as their propagation in the galactic and extragalactic magnetic fields, both regular and fluctuating. A special attention is paid to the recent results of the X-ray and g amma-ray observations that shed light on the origin of the galactic cosmic rays and the challenging results of Pierre Auger Observatory on the ultra high energy cosmic rays. The perspectives of both high energy astrophysics and cosmic-ray astronomy to identify the sources of ultra high energy cosmic rays, the mechanisms of particle acceleration, to measure the intergalactic radiation fields and to reveal the structure of magnetic fields of very different scales are outlined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا