ﻻ يوجد ملخص باللغة العربية
We investigate the delicate interplay between the types of singular fibers in elliptic fibrations of Calabi-Yau threefolds (used to formulate F-theory) and the matter representation of the associated Lie algebra. The main tool is the analysis and the appropriate interpretation of the anomaly formula for six-dimensional supersymmetric theories. We find that this anomaly formula is geometrically captured by a relation among codimension two cycles on the base of the elliptic fibration, and that this relation holds for elliptic fibrations of any dimension. We introduce a Tate cycle which efficiently describes this relationship, and which is remarkably easy to calculate explicitly from the Weierstrass equation of the fibration. We check the anomaly cancellation formula in a number of situations and show how this formula constrains the geometry (and in particular the Euler characteristic) of the Calabi-Yau threefold.
We present a list of Calabi-Yau threefolds known to us, and with holonomy groups that are precisely SU(3), rather than a subgroup, with small Hodge numbers, which we understand to be those manifolds with height $(h^{1,1}+h^{2,1})le 24$. With the comp
We discuss the period geometry and the topological string amplitudes on elliptically fibered Calabi-Yau fourfolds in toric ambient spaces. In particular, we describe a general procedure to fix integral periods. Using some elementary facts from homolo
We apply the modular approach to computing the topological string partition function on non-compact elliptically fibered Calabi-Yau 3-folds with higher Kodaira singularities in the fiber. The approach consists in making an ansatz for the partition fu
We show how the smooth geometry of Calabi-Yau manifolds emerges from the thermodynamic limit of the statistical mechanical model of crystal melting defined in our previous paper arXiv:0811.2801. In particular, the thermodynamic partition function of
We investigate the swampland distance conjecture (SDC) in the complex moduli space of type II compactifications on one-parameter Calabi-Yau threefolds. This class of manifolds contains hundreds of examples and, in particular, a subset of 14 geometrie