ﻻ يوجد ملخص باللغة العربية
We report the security analysis of time-coding quantum key distribution protocols. The protocols make use of coherent single-photon pulses. The key is encoded in the photon time-detection. The use of coherent superposition of states allows to detect eavesdropping of the key. We give a mathematical model of a first protocol from which we derive a second, simpler, protocol. We derive the security analysis of both protocols and find that the secure rates can be similar to those obtained with the BB84 protocol. We then calculate the secure distance for those protocols over standard fibre links. When using low-noise superconducting single photon detectors, secure distances over 200 km can be foreseen. Finally, we analyse the consequences of photon-number splitting attacks when faint pulses are used instead of single photon pulses. A decoy states technique can be used to prevent such attacks.
Quantum key distribution (QKD) protocols are cryptographic techniques with security based only on the laws of quantum mechanics. Two prominent QKD schemes are the BB84 and B92 protocols that use four and two quantum states, respectively. In 2000, Pho
A quantum key distribution protocol based on time coding uses delayed one photon pulses with minimum time-frequency uncertainty product. Possible overlap between the pulses induces an ambiguous delay measurement and ensures a secure key exchange.
We have implemented an experimental set-up in order to demonstrate the feasibility of time-coding protocols for quantum key distribution. Alice produces coherent 20 ns faint pulses of light at 853 nm. They are sent to Bob with delay 0 ns (encoding bi
Time coding quantum key distribution with coherent faint pulses is experimentally demonstrated. A measured 3.3 % quantum bit error rate and a relative contrast loss of 8.4 % allow a 0.49 bit/pulse advantage to Bob.
Decoy state protocols are a useful tool for many quantum key distribution systems implemented with weak coherent pulses, allowing significantly better secret bit rates and longer maximum distances. In this paper we present a method to numerically fin