Can quantum lattice be generated through several classical ones superimposed in spacetime continuum?


الملخص بالإنكليزية

This paper has few different, but interrelated, goals. At first, we will propose a version of discretization of quantum field theory (Chapter 3). We will write down Lagrangians for sample bosonic fields (Section 3.1) and also attempt to generalize them to fermionic QFT (Section 3.2). At the same time, we will insist that the elements of our discrete space are embedded into a continuum. This will allow us to embed several different lattices into the same continuum and view them as separate quantum field configurations. Classical parameters will be used in order to specify which lattice each given element belongs to. Furthermore, another set of classical parameters will be proposed in order to define so-called probability amplitude of each field configuration, embodied by a corresponding lattice, taking place (Chapter 2). Apart from that, we will propose a set of classical signals that propagate throughout continuum, and define their dynamics in such a way that they produce the mathematical information consistent with the desired quantum effects within the lattices we are concerned about (Chapter 4). Finally, we will take advantage of the lack of true quantum mechanics, and add gravity in such a way that avoids the issue of its quantization altogether (Chapter 5). In the process of doing so, we will propose a gravity-based collapse model of a wave function. In particular, we will claim that the collapse of a wave function is merely a result of states that violate Einsteins equation being thrown away. The mathematical structure of this model (in particular, the appeal to gamblers ruin) will be similar to GRW collapse models.

تحميل البحث