ﻻ يوجد ملخص باللغة العربية
Plasmon and coupled plasmon-phonon modes in graphene are investigated the-oretically within the diagrammatic self-consistent field theory. It shows that two plasmon modes and four coupled plasmon-phonon modes can be excited via intra-and inter-band transition channels. It is found that with increasing q and carrier density, the plasmon modes couple strongly with the optic-phonon modes in graphene. The coupled plasmon-phonon modes exhibit some interesting features which can be utilized to realize the plasmonic devices. Our results suggest that the carrier-phonon interaction should be considered to understand and explain the properties of elementary electronic excitations in graphene.
Properties of graphene plasmons are greatly affected by their coupling to phonons. While such coupling has been routinely observed in both near-field and far-field graphene spectroscopy, the interplay between coupling strength and mode losses, and it
Coupled quantum Hall edge channels show intriguing non-trivial modes, for example, charge and neutral modes at Landau level filling factors 2 and 2/3. We propose an appropriate and effective model with Coulomb interaction and disorder-induced tunneli
We report on strong coupling of the charge carrier plasmon $omega_{PL}$ in graphene with the surface optical phonon $omega_{SO}$ of the underlying SiC(0001) substrate with low electron concentration ($n=1.2times 10^{15}$ $cm^{-3}$) in the long wavele
We investigate the plasmon dispersion relation and damping rate of collective excitations in a double-layer system consisting of bilayer graphene and GaAs quantum well, separated by a distance, at zero temperature with no interlayer tunneling. We use
Resonance diffraction in the periodic array of graphene micro-ribbons is theoretically studied following a recent experiment [L. Ju et al, Nature Nanotech. 6, 630 (2011)]. Systematic studies over a wide range of parameters are presented. It is shown