ﻻ يوجد ملخص باللغة العربية
The X-ray telescope on board the Swift satellite for gamma-ray burst astronomy has been exposed to the radiation of the space environment since launch in November 2004. Radiation causes damage to the detector, with the generation of dark current and charge trapping sites that result in the degradation of the spectral resolution and an increase of the instrumental background. The Swift team has a dedicated calibration program with the goal of recovering a significant proportion of the lost spectroscopic performance. Calibration observations of supernova remnants with strong emission lines are analysed to map the detector charge traps and to derive position-dependent corrections to the measured photon energies. We have achieved a substantial recovery in the XRT resolution by implementing these corrections in an updated version of the Swift XRT gain file and in corresponding improvements to the Swift XRT HEAsoft software. We provide illustrations of the impact of the enhanced energy resolution, and show that we have recovered most of the spectral resolution lost since launch.
The Swift X-ray Telescope (XRT) focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 144 eV FWHM at 6.5 keV. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant i
We report the results from our analysis of a large set of archival data acquired with the X-ray telescope (XRT) onboard Swift, covering the sky region surrounding objects from the first Fermi Large Area Telescope (LAT) catalogue of high-energy source
The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration
(Abbreviated) We show that the XRT spectral response calibration was complicated by various energy offsets in photon counting (PC) and windowed timing (WT) modes related to the way the CCD is operated in orbit (variation in temperature during observa
We present the 0.5 - 78 keV spectral analysis of 18 broad line AGN belonging to the INTEGRAL complete sample. Using simultaneous Swift-XRT and NuSTAR observations and employing a simple phenomenological model to fit the data, we measure with a good c