ترغب بنشر مسار تعليمي؟ اضغط هنا

Recovering Swift-XRT energy resolution through CCD charge trap mapping

99   0   0.0 ( 0 )
 نشر من قبل Claudio Pagani
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The X-ray telescope on board the Swift satellite for gamma-ray burst astronomy has been exposed to the radiation of the space environment since launch in November 2004. Radiation causes damage to the detector, with the generation of dark current and charge trapping sites that result in the degradation of the spectral resolution and an increase of the instrumental background. The Swift team has a dedicated calibration program with the goal of recovering a significant proportion of the lost spectroscopic performance. Calibration observations of supernova remnants with strong emission lines are analysed to map the detector charge traps and to derive position-dependent corrections to the measured photon energies. We have achieved a substantial recovery in the XRT resolution by implementing these corrections in an updated version of the Swift XRT gain file and in corresponding improvements to the Swift XRT HEAsoft software. We provide illustrations of the impact of the enhanced energy resolution, and show that we have recovered most of the spectral resolution lost since launch.



قيم البحث

اقرأ أيضاً

The Swift X-ray Telescope (XRT) focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 144 eV FWHM at 6.5 keV. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant i n-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Loss of temperature control motivated a laboratory program to re-optimize the CCD substrate voltage, we describe the small changes in the CCD response that would result from use of a substrate voltage of 6V.
We report the results from our analysis of a large set of archival data acquired with the X-ray telescope (XRT) onboard Swift, covering the sky region surrounding objects from the first Fermi Large Area Telescope (LAT) catalogue of high-energy source s (1FHL), which still lack an association. Of the 23 regions analysed, ten did not show any evidence of X-ray emission, but 13 were characterised by the presence of one or more objects emitting in the 0.3-10 keV band. Only in a couple of cases is the X-ray counterpart located outside the Fermi positional uncertainty, while in all other cases the associations found are compatible with the high-energy error ellipses. All counterparts we found have been studied in detail by means of a multi-waveband approach to evaluate their nature or class; in most cases, we have been able to propose a likely or possible association except for one Fermi source whose nature remains doubtful at the moment. The majority of the likely associations are extragalactic in nature, most probably blazars of the BL Lac type.
The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Comparison of observed spectra with models folded through the instrument response produces negative residuals around and below the Oxygen edge. We discuss several possible causes for such residuals. Traps created by proton damage on the CCD increase the charge transfer inefficiency (CTI) over time. We describe the evolution of the CTI since the launch and its effect on the CCD spectral resolution and the gain.
572 - O. Godet 2008
(Abbreviated) We show that the XRT spectral response calibration was complicated by various energy offsets in photon counting (PC) and windowed timing (WT) modes related to the way the CCD is operated in orbit (variation in temperature during observa tions, contamination by optical light from the sunlit Earth and increase in charge transfer inefficiency). We describe how these effects can be corrected for in the ground processing software. We show that the low-energy response, the redistribution in spectra of absorbed sources, and the modelling of the line profile have been significantly improved since launch by introducing empirical corrections in our code when it was not possible to use a physical description. We note that the increase in CTI became noticeable in June 2006 (i.e. 14 months after launch), but the evidence of a more serious degradation in spectroscopic performance (line broadening and change in the low-energy response) due to large charge traps (i.e. faults in the Si crystal) became more significant after March 2007. We describe efforts to handle such changes in the spectral response. Finally, we show that the commanded increase in the substrate voltage from 0 to 6V on 2007 August 30 reduced the dark current, enabling the collection of useful science data at higher CCD temperature (up to -50C). We also briefly describe the plan to recalibrate the XRT response files at this new voltage.
We present the 0.5 - 78 keV spectral analysis of 18 broad line AGN belonging to the INTEGRAL complete sample. Using simultaneous Swift-XRT and NuSTAR observations and employing a simple phenomenological model to fit the data, we measure with a good c onstraint the high energy cut-off in 13 sources, while we place lower limits on 5 objects. We found a mean high-energy cut-off of 111 keV (standard deviation = 45 keV) for the whole sample, in perfect agreement with what found in our previous work using non simultaneous observations and with what recently published using NuSTAR data. This work suggests that simultaneity of the observations in the soft and hard X-ray band is important but not always essential, especially if flux and spectral variability are properly accounted for. A lesser agreement is found when we compare our cut-off measurements with the ones obtained by Ricci et al. (2017) using Swift-BAT high energy data, finding that their values are systematically higher than ours. We have investigated whether a linear correlation exists between photon index and the cut-off and found a weak one, probably to be ascribed to the non perfect modelling of the soft part of the spectra, due to the poor statistical quality of the 2-10 keV X-ray data. No correlation is also found between the Eddington ratio and the cut-off, suggesting that only using high statistical quality broad-band spectra is it possible to verify the theoretical predictions and study the physical characteristics of the hot corona and its geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا