ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal pupil apodizations for arbitrary apertures

142   0   0.0 ( 0 )
 نشر من قبل Alexis Carlotti
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here fully optimized two-dimensional pupil apodizations for which no specific geometric constraints are put on the pupil plane apodization, apart from the shape of the aperture itself. Masks for circular and segmented apertures are displayed, with and without central obstruction and spiders. Examples of optimal masks are shown for Subaru, SPICA and JWST. Several high-contrast regions are considered with different sizes, positions, shapes and contrasts. It is interesting to note that all the masks that result from these optimizations tend to have a binary transmission profile.



قيم البحث

اقرأ أيضاً

We present methods for optimizing pupil and focal plane optical elements that improve the performance of vortex coronagraphs on telescopes with obstructed or segmented apertures. Phase-only and complex masks are designed for the entrance pupil, focal plane, and the plane of the Lyot stop. Optimal masks are obtained using both analytical and numerical methods. The latter makes use of an iterative error reduction algorithm to calculate correcting optics that mitigate unwanted diffraction from aperture obstructions. We analyze the achieved performance in terms of starlight suppression, contrast, off-axis image quality, and chromatic dependence. Manufacturing considerations and sensitivity to aberrations are also discussed. This work provides a path to joint optimization of multiple coronagraph planes to maximize sensitivity to exoplanets and other faint companions.
We introduce a new class of solutions for Apodized Pupil Lyot Coronagraphs (APLC) with segmented aperture telescopes to remove broadband diffracted light from a star with a contrast level of $10^{10}$. These new coronagraphs provide a key advance to enabling direct imaging and spectroscopy of Earth twins with future large space missions. Building on shaped pupil (SP) apodization optimizations, our approach enables two-dimensional optimizations of the system to address any aperture features such as central obstruction, support structures or segment gaps. We illustrate the technique with a design that could reach $10^{10}$ contrast level at 34,mas for a 12,m segmented telescope over a 10% bandpass centered at a wavelength $lambda_0=$500,nm. These designs can be optimized specifically for the presence of a resolved star, and in our example, for stellar angular size up to 1.1,mas. This would allow probing the vicinity of Sun-like stars located beyond 4.4,pc, therefore fully retiring this concern. If the fraction of stars with Earth-like planets is $eta_{Earth}=0.1$, with 18% throughput, assuming a perfect, stable wavefront and considering photon noise only, 12.5 exo-Earth candidates could be detected around nearby stars with this design and a 12,m space telescope during a five-year mission with two years dedicated to exo-Earth detection (one total year of exposure time and another year of overheads). Our new hybrid APLC/SP solutions represent the first numerical solution of a coronagraph based on existing mask technologies and compatible with segmented apertures, and that can provide contrast compatible with detecting and studying Earth-like planets around nearby stars. They represent an important step forward towards enabling these science goals with future large space missions.
The Apodized Pupil Lyot Coronagraph (APLC) is a diffraction suppression system installed in the recently deployed instruments Palomar/P1640, Gemini/GPI, and VLT/SPHERE to allow direct imaging and spectroscopy of circumstellar environments. Using a pr olate apodization, the current implementations offer raw contrasts down to $10^{-7}$ at 0.2 arcsec from a star over a wide bandpass (20%), in the presence of central obstruction and struts, enabling the study of young or massive gaseous planets. Observations of older or lighter companions at smaller separations would require improvements in terms of inner working angle (IWA) and contrast, but the methods originally used for these designs were not able to fully explore the parameter space. We here propose a novel approach to improve the APLC performance. Our method relies on the linear properties of the coronagraphic electric field with the apodization at any wavelength to develop numerical solutions producing coronagraphic star images with high-contrast region in broadband light. We explore the parameter space by considering different aperture geometries, contrast levels, dark-zone sizes, bandpasses, and focal plane mask sizes. We present an application of these solutions to the case of Gemini/GPI with a design delivering a $10^{-8}$ raw contrast at 0.19 arcsec and offering a significantly reduced sensitivity to low-order aberrations compared to the current implementation. Optimal solutions have also been found to reach $10^{-10}$ contrast in broadband light regardless of the telescope aperture shape (in particular the central obstruction size), with effective IWA in the $2-3.5lambda/D$ range, therefore making the APLC a suitable option for the future exoplanet direct imagers on the ground or in space.
The use of interferometric nulling for the direct detection of extrasolar planets is in part limited by the extreme sensitivity of the instrumental response to tiny optical path differences between apertures. The recently proposed kernel-nuller archi tecture attempts to alleviate this effect with an all-in-one combiner design that enables the production of observables inherently robust to residual optical path differences (<< lambda). Until now, a unique kernel nuller design has been proposed ad hoc for a four-beam combiner. We examine the properties of this original design and generalize them for an arbitrary number of apertures. We introduce a convenient graphical representation of the complex combiner matrices that model the kernel nuller and highlight the symmetry properties that enable the formation of kernel nulls. The analytical description of the nulled outputs we provide demonstrates the properties of a kernel nuller. Our description helps outline a systematic way to build a kernel nuller for an arbitrary number of apertures. The designs for 3- and 6-input combiners are presented along with the original 4-input concept. Combiners grow in complexity with the square of the number of apertures. While one can mitigate this complexity by multiplexing nullers working independently over a smaller number of sub-apertures, an all-in-one kernel nuller recombining a large number of apertures appears as the most efficient way to characterize a high-contrast complex astrophysical scene. One can design kernel nullers for an arbitrary number of apertures that produce observable quantities robust to residual perturbations. The designs we recommend are lossless and take full advantage of all the available interferometric baselines. They are complete, result in as many kernel nulls as the theoretically expected number of closure-phases, and are optimized to require as few outputs as possible.
A set of pupil apodization functions for use with a vortex coronagraph on telescopes with obscured apertures is presented. We show analytically that pupil amplitudes given by real-valued Zernike polynomials offer ideal on-axis starlight cancellation when applied to unobscured circular apertures. The charge of the vortex phase element must be a nonzero even integer, greater than the sum of the degree and the absolute value of its azimuthal order of the Zernike polynomial. Zero-valued lines and points of Zernike polynomials, or linear combinations thereof, can be matched to obstructions in the pupils of ground-based telescopes to improve the contrast achieved by a vortex coronagraph. This approach works well in the presence of a central obscuration and radial support structures. We analyze the contrast, off-axis throughput, and post-coronagraph point spread functions of an apodized vortex coronagraph designed for the European Extremely Large Telescope (E-ELT). This technique offers very good performance on apertures with large obscuring support structures similar to those on future 30-40m class ground-based telescopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا