ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origin of Neutral Hydrogen Clouds in Nearby Galaxy Groups: Exploring the Range Of Galaxy Interactions

103   0   0.0 ( 0 )
 نشر من قبل Katie Chynoweth
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine high resolution N-body simulations with deep observations of neutral hydrogen (HI) in nearby galaxy groups in order to explore two well-known theories of HI cloud formation: HI stripping by galaxy interactions and dark matter minihalos with embedded HI gas. This paper presents new data from three galaxy groups, Canes Venatici I, NGC 672, and NGC 45, and assembles data from our previous galaxy group campaign to generate a rich HI cloud archive to compare to our simulated data. We find no HI clouds in the Canes Venatici I, NGC 672, or NGC 45 galaxy groups. We conclude that HI clouds in our detection space are most likely to be generated through recent, strong galaxy interactions. We find no evidence of HI clouds associated with dark matter halos above M_HI = 10^6 M_Sun, within +/- 700 km/s of galaxies, and within 50 kpc projected distance of galaxies.



قيم البحث

اقرأ أيضاً

90 - C.T. Pratt 2021
Much of the baryons in galaxy groups are thought to have been driven out to large distances ($gtrsim$$R_{500}$) by feedback, but there are few constraining observations of this extended gas. This work presents the resolved Sunyaev--Zeldovich (SZ) pro files for a stacked sample of 10 nearby galaxy groups within the mass range log$_{10}(M_{500}[M_{odot}]) = 13.6 -13.9$. We measured the SZ profiles using the publicly available $y$-map from the Planck Collaboration as well as our own $y$-maps constructed from more rece
109 - N. P. F. McKay 2002
We present preliminary results from a study of the neutral hydrogen (HI) properties of an X-ray selected sample of nearby loose galaxy groups. This forms part of a multi-wavelength investigation (X-ray, optical and radio) of the formation and evoluti on of galaxies within a group environment. Some initial findings of an ATNF Parkes Multibeam wide-area neutral hydrogen imaging survey of 17 nearby galaxy groups include two new, potentially isolated clouds of HI in the NGC 1052 and NGC 5044 groups and significant amounts of HI within the group virial radii of groups NGC 3557 and IC 1459 - two groups with complex X-ray structures that suggest they may still be in the act of virialisation. Here we present ATCA high-resolution synthesis-imaging follow-up observations of the distribution and kinematics of HI in these four groups.
One of the key science drivers for the development of the SKA is to observe the neutral hydrogen, HI, in galaxies as a means to probe galaxy evolution across a range of environments over cosmic time. Over the past decade, much progress has been made in theoretical simulations and observations of HI in galaxies. However, recent HI surveys on both single dish radio telescopes and interferometers, while providing detailed information on global HI properties, the dark matter distribution in galaxies, as well as insight into the relationship between star formation and the interstellar medium, have been limited to the local universe. Ongoing and upcoming HI surveys on SKA pathfinder instruments will extend these measurements beyond the local universe to intermediate redshifts with long observing programmes. We present here an overview of the HI science which will be possible with the increased capabilities of the SKA and which will build upon the expected increase in knowledge of HI in and around galaxies obtained with the SKA pathfinder surveys. With the SKA1 the greatest improvement over our current measurements is the capability to image galaxies at reasonable linear resolution and good column density sensitivity to much higher redshifts (0.2 < z < 1.7). So one will not only be able to increase the number of detections to study the evolution of the HI mass function, but also have the sensitivity and resolution to study inflows and outflows to and from galaxies and the kinematics of the gas within and around galaxies as a function of environment and cosmic time out to previously unexplored depths. The increased sensitivity of SKA2 will allow us to image Milky Way-size galaxies out to redshifts of z=1 and will provide the data required for a comprehensive picture of the HI content of galaxies back to z~2 when the cosmic star formation rate density was at its peak.
By means of zoom-in hydrodynamic simulations we quantify the amount of neutral hydrogen (HI) hosted by groups and clusters of galaxies. Our simulations, which are based on an improved formulation of smoothed particle hydrodynamics (SPH), include radi ative cooling, star formation, metal enrichment and supernova feedback, and can be split in two different groups, depending on whether feedback from active galactic nuclei (AGN) is turned on or off. Simulations are analyzed to account for HI self-shielding and the presence of molecular hydrogen. We find that the mass in neutral hydrogen of dark matter halos monotonically increases with the halo mass and can be well described by a power-law of the form $M_{rm HI}(M,z)propto M^{3/4}$. Our results point out that AGN feedback reduces both the total halo mass and its HI mass, although it is more efficient in removing HI. We conclude that AGN feedback reduces the neutral hydrogen mass of a given halo by $sim50%$, with a weak dependence on halo mass and redshift. The spatial distribution of neutral hydrogen within halos is also affected by AGN feedback, whose effect is to decrease the fraction of HI that resides in the halo inner regions. By extrapolating our results to halos not resolved in our simulations we derive astrophysical implications from the measurements of $Omega_{rm HI}(z)$: halos with circular velocities larger than $sim25~{rm km/s}$ are needed to host HI in order to reproduce observations. We find that only the model with AGN feedback is capable of reproducing the value of $Omega_{rm HI}b_{rm HI}$ derived from available 21cm intensity mapping observations.
We present a Giant Molecular Cloud (GMC) catalog toward M33, containing 71 GMCs in total, based on wide field and high sensitivity CO(J=3-2) observations with a spatial resolution of 100 pc using the ASTE 10 m telescope. Employing archival optical da ta, we identify 75 young stellar groups (YSGs) from the excess of the surface stellar density, and estimate their ages by comparing with stellar evolution models. A spatial comparison among the GMCs, YSGs, and HII regions enable us to classify GMCs into four categories: Type A showing no sign of massive star formation (SF), Type B being associated only with HII regions, Type C with both HII regions and <10 Myr-old YSGs and Type-D with both HII regions and 10--30 Myr YSGs. Out of 65 GMCs (discarding those at the edges of the observed fields), 1 (1%), 13 (20%), 29 (45%), and 22 (34%) are Types A, B, C, and D, respectively. We interpret these categories as stages in a GMC evolutionary sequence. Assuming that the timescale for each evolutionary stage is proportional to the number of GMCs, the lifetime of a GMC with a mass >10^5 Mo is estimated to be 20--40 Myr. In addition, we find that the dense gas fraction as traced by the CO(J=3-2)/CO(J=1-0) ratio is enhanced around SF regions. This confirms a scenario where dense gas is preferentially formed around previously generated stars, and will be the fuel for the next stellar generation. In this way, massive SF gradually propagates in a GMC until gas is exhausted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا