ﻻ يوجد ملخص باللغة العربية
Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 1e-26 cm^3 s^-1 at 5 GeV to about 5e-23 cm^3 s^-1 at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (~3e-26 cm^3 s^-1 for a purely s-wave cross section), without assuming additional boost factors.
The Fermi LAT collaboration has recently presented constraints on the gamma-ray signal from annihilating dark matter using separate analyses of a number of dwarf spheroidal galaxies. Since the expected annihilation signal has the same physical proper
Dwarf spheroidal galaxies have a large mass to light ratio and low astrophysical background, and are therefore considered one of the most promising targets for dark matter searches in the gamma-ray band. By applying a joint likelihood analysis, the p
The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considere
We study the abilities of the Fermi-LAT instrument on board of the Fermi mission to simultaneously constrain the Milky Way dark matter density profile and some dark matter particle properties, as annihilation cross section, mass and branching ratio i
We use 7 years of electron and positron Fermi-LAT data to search for a possible excess in the direction of the Sun in the energy range from 42 GeV to 2 TeV. In the absence of a positive signal we derive flux upper limits which we use to constrain two