ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of temperature on resonant electron transport through stochastic conduction channels in superlattices

393   0   0.0 ( 0 )
 نشر من قبل Alexander Balanov
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that resonant electron transport in semiconductor superlattices with an applied electric and tilted magnetic field can, surprisingly, become more pronounced as the lattice and conduction electron temperature increases from 4.2 K to room temperature and beyond. It has previously been demonstrated that at certain critical field parameters, the semiclassical trajectories of electrons in the lowest miniband of the superlattice change abruptly from fully localised to completely unbounded. The unbounded electron orbits propagate through intricate web patterns, known as stochastic webs, in phase space, which act as conduction channels for the electrons and produce a series of resonant peaks in the electron drift velocity versus electric field curves. Here, we show that increasing the lattice temperature strengthens these resonant peaks due to a subtle interplay between thermal population of the conduction channels and transport along them. This enhances both the electron drift velocity and the influence of the stochastic webs on the current-voltage characteristics, which we calculate by making self-consistent solutions of the coupled electron transport and Poisson equations throughout the superlattice. These solutions reveal that increasing the temperature also transforms the collective electron dynamics by changing both the threshold voltage required for the onset of self-sustained current oscillations, produced by propagating charge domains, and the oscillation frequency.



قيم البحث

اقرأ أيضاً

Contrary to the common belief that electron-electron interaction (EEI) should be negligible in s-orbital-based conductors, we demonstrated that the EEI effect could play a significant role on electronic transport leading to the misinterpretation of t he Hall data. We show that the EEI effect is primarily responsible for an increase in the Hall coefficient in the La-doped SrSnO3 films below 50 K accompanied by an increase in the sheet resistance. The quantitative analysis of the magnetoresistance (MR) data yielded a large phase coherence length of electrons exceeding 450 nm at 1.8 K and revealed the electron-electron interaction being accountable for breaking of electron phase coherency in La-doped SrSnO3 films. These results while providing critical insights into the fundamental transport behavior in doped stannates also indicate the potential applications of stannates in quantum coherent electronic devices owing to their large phase coherence length.
We analyze electron transport through a quantum shuttle for the applied voltage below the instability threshold. We obtain current-voltage characteristics of this system and show that at low temperature they exhibit pronounced steps. The temperature dependence of the current is calculated in the range from 2K to 300K and it demonstrates a wide variety of behavior - from 1/T decreasing to an exponential growth - depending on how deep the shuttle is in quantum regime. The results obtained are compared to experimental data on electron transport through long molecules.
We investigate sequential tunneling through a multilevel quantum dot confining multiple electrons, in the regime where several channels are available for transport within the bias window. By analyzing solutions to the master equations of the reduced density matrix, we give general conditions on when the presence of a second transport channel in the bias window quenches transport through the quantum dot. These conditions are in terms of distinct tunneling anisotropies which may aid in explaining the occurrence of negative differential conductance in quantum dots in the nonlinear regime.
The effects of Cu-doping on the structural, magnetic, and transport properties of La0.7Sr0.3Mn1-xCuxO3 (0 < x < 0.20) have been studied using neutron diffraction, magnetization and magnetoresistance (MR) measurements. All samples show the rhombohedra l structure with the R3c space-group from 10K to room temperature (RT). Neutron diffraction data suggest that some of the Cu ions have a Cu3+ state in these compounds. The substitution of Mn by Cu affects the Mn-O bond length and Mn-O-Mn bond angle resulting from the minimization of the distortion of the MnO6 octahedron. Resistivity measurements show that a metal to insulator transition occurs for the x more than 0.15 samples. The x = 0.15 sample shows the highest MR(_80%), which might result from the co-existence of Cu3+/Cu2+ and the dilution effect of Cu-doping on the double exchange interaction.
We have performed terahertz time-domain spectroscopy of carrier-doped nanoporous crystal 12CaO7Al2O3 showing the Mott variable range hopping at room temperature. The real part of the dielectric constant clearly demonstrates the nature of localized ca rriers. The frequency dependence of both the real and imaginary parts of the dielectric constant can be simply explained by assuming two contributions: a dielectric response by the parent compound with no carriers and an AC hopping conduction with the Jonscher law generally reported up to GHz range. The possible obedience to the Jonscher law in the THz range suggests a relaxation time of the hopping carriers much faster than 1ps in the carrier-doped 12CaO7Al2O3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا