ﻻ يوجد ملخص باللغة العربية
The exact evaluation of the disconnected diagram contributions to the flavor-singlet pseudoscalar meson mass, the nucleon sigma term and the nucleon electromagnetic form factors, is carried out utilizing GPGPU technology with the NVIDIA CUDA platform. The disconnected loops are also computed using stochastic methods with several noise reduction techniques. Various dilution schemes as well as the truncated solver method are studied. We make a comparison of these stochastic techniques to the exact results and show that the number of noise vectors depends on the operator insertion in the fermionic loop.
The fomalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factor
The role of the strange quarks on the low-energy interactions of the proton can be probed through the strange electromagnetic form factors. Knowledge of these form factors provides essential input for parity-violating processes and contributes to the
We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured
We evaluate the isovector nucleon electromagnetic form factors in quenched and full QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at beta=6.0 enabling us to reach low momentum transfers and a l
We report lattice results of $D_s$ meson semi-leptonic decay form factors to $eta$ and $eta$ mesons. This decay process contains disconnected fermion loops, which are challenging in lattice calculations. Our result shows that the disconnected loops give significant contributions to the form factors.