ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for spin memory in the electron phase coherence in graphene

157   0   0.0 ( 0 )
 نشر من قبل Aleksey Kozikov
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the dependence of the conductivity of graphene as a function of magnetic field, temperature and carrier density and discover a saturation of the dephasing length at low temperatures that we ascribe to spin memory effects. Values of the spin coherence length up to eight microns are found to scale with the mean free path. We consider different origins of this effect and suggest that it is controlled by resonant states that act as magnetic-like defects. By varying the level of disorder, we demonstrate that the spin coherence length can be tuned over an order of magnitude.



قيم البحث

اقرأ أيضاً

The most celebrated property of the quantum spin Hall effect is the presence of spin-polarized counter-propagating edge states. This novel edge state configuration has also been predicted to occur in graphene when spin-split electron- and hole-like L andau levels are forced to cross at the edge of the sample. In particular, a quantum spin Hall analogue has been predicted at { u}=0 in bilayer graphene if the ground state is a spin ferromagnet. Previous studies have demonstrated that the bilayer { u}=0 state is an insulator in a perpendicular magnetic field, though the exact nature of this state has not been identified. Here we present measurements of the { u}=0 state in a dual-gated bilayer graphene device in tilted magnetic field. The application of an in-plane magnetic field and perpendicular electric field allows us to map out a full phase diagram of the { u}=0 state as a function of experimentally tunable parameters. At large in-plane magnetic field we observe a quantum phase transition to a metallic state with conductance of order 4e^2/h, consistent with predictions for the ferromagnet.
105 - K. Hatsuda , H. Mine , T. Nakamura 2018
Realization of the quantum-spin-Hall effect in graphene devices has remained an outstanding challenge dating back to the inception of the field of topological insulators. Graphenes exceptionally weak spin-orbit coupling -stemming from carbons low mas s- poses the primary obstacle. We experimentally and theoretically study artificially enhanced spin-orbit coupling in graphene via random decoration with dilute Bi2Te3 nanoparticles. Remarkably, multi-terminal resistance measurements suggest the presence of helical edge states characteristic of a quantum-spin-Hall phase; the magnetic-field and temperature dependence of the resistance peaks, X-ray photoelectron spectra, scanning tunneling spectroscopy, and first-principles calculations further support this scenario. These observations highlight a pathway to spintronics and quantum-information applications in graphene-based quantum-spin-Hall platforms.
Electron spin coherence is induced via light-hole transitions in a quantum well waveguide without either an external or internal DC magnetic field. In the absence of spin precession, the induced spin coherence is detected through effects of quantum i nterference in the spectral domain coherent nonlinear optical response. We interpret the experimental results qualitatively using a simple few-level model with only the optical transition selection rule as its basic ingredients.
We investigated the magnetotransport of InAs nanowires grown by selective area metal-organic vapor phase epitaxy. In the temperature range between 0.5 and 30 K reproducible fluctuations in the conductance upon variation of the magnetic field or the b ack-gate voltage are observed, which are attributed to electron interference effects in small disordered conductors. From the correlation field of the magnetoconductance fluctuations the phase-coherence length l_phi is determined. At the lowest temperatures l_phi is found to be at least 300 nm, while for temperatures exceeding 2 K a monotonous decrease of l_phi with temperature is observed. A direct observation of the weak antilocalization effect indicating the presence of spin-orbit coupling is masked by the strong magnetoconductance fluctuations. However, by averaging the magnetoconductance over a range of gate voltages a clear peak in the magnetoconductance due to the weak antilocalization effect was resolved. By comparison of the experimental data to simulations based on a recursive two-dimensional Greens function approach a spin-orbit scattering length of approximately 70 nm was extracted, indicating the presence of strong spin-orbit coupling.
Theory of the electron spin relaxation in graphene on the SiO$_2$ substrate is developed. Charged impurities and polar optical surface phonons in the substrate induce an effective random Bychkov-Rashba-like spin-orbit coupling field which leads to sp in relaxation by the Dyakonov-Perel mechanism. Analytical estimates and Monte Carlo simulations show that the corresponding spin relaxation times are between micro- to milliseconds, being only weakly temperature dependent. It is also argued that the presence of adatoms on graphene can lead to spin lifetimes shorter than nanoseconds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا