ترغب بنشر مسار تعليمي؟ اضغط هنا

Isotope Shifts of the $6d,^2$D$_{3/2},$ - $7p,^2$P$_{1/2},$ Transition in Trapped Short-Lived $^{209-214}$Ra$^+$

215   0   0.0 ( 0 )
 نشر من قبل Gouri Shankar Giri
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Laser spectroscopy of short-lived radium isotopes in a linear Paul trap has been performed. The isotope shifts of the $6d,^2$D$_{3/2},$ - $7p,^2$P$_{1/2},$ transition in $^{209-214}$Ra$^+$ were measured, which are sensitive to the short range part of the atomic wavefunctions. The results are essential experimental input for improving the precision of atomic structure calculation. This is indispensable for parity violation in Ra$^+$ aiming at the determination of the weak mixing angle.



قيم البحث

اقرأ أيضاً

Isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions are evaluated for a wide range of the nuclear charge number: Z=8-92. The calculations of the relativistic nuclear recoil and nuclear size effects are performed using a large scale configuration-interaction Dirac-Fock-Sturm method. The corresponding QED corrections are also taken into account. The results of the calculations are compared with the theoretical values obtained with other methods. The accuracy of the isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions is significantly improved.
Ab initio calculations of QED radiative corrections to the $^2P_{1/2}$ - $^2P_{3/2}$ fine-structure transition energy are performed for selected F-like ions. These calculations are nonperturbative in $alpha Z$ and include all first-order and many-ele ctron second-order effects in $alpha$. When compared to approximate QED computations, a notable discrepancy is found especially for F-like uranium for which the predicted self-energy contributions even differ in sign. Moreover, all deviations between theory and experiment for the $^2P_{1/2}$ - $^2P_{3/2}$ fine-structure energies of F-like ions, reported recently by Li et al., Phys. Rev. A 98, 020502(R) (2018), are resolved if their highly accurate, non-QED fine-structure values are combined with the QED corrections ab initially evaluated here.
148 - B. M. Henson 2017
The workhorse of atomic physics, quantum electrodynamics, is one of the best-tested theories in physics. However recent discrepancies have shed doubt on its accuracy for complex atomic systems. To facilitate the development of the theory further we a im to measure transition dipole matrix elements of metastable helium (He*) (the ideal 3 body test-bed) to the highest accuracy thus far. We have undertaken a measurement of the `tune-out wavelength which occurs when the contributions to the dynamic polarizability from all atomic transitions sum to zero; thus illuminating an atom with this wavelength of light then produces no net energy shift. This provides a strict constraint on the transition dipole matrix elements without the complication and inaccuracy of other methods. Using a novel atom-laser based technique we have made the first measurement of the tune-out wavelength in metastable helium between the $3^{3}P_{1,2,3}$ and $2^{3}P_{1,2,3}$ states at 413.07(2) nm which compares well with the predicted valuecite{Mitroy2013} of 413.02(9) nm. We have additionally developed many of the methods necessary to improve this measurement to the 100 fm level of accuracy where it will form the most accurate determination of transition rate information ever made in He* and provide a stringent test for atomic QED simulations. We believe this measurement to be one of the most sensitive ever made of an optical dipole potential, able to detect changes in potentials of $sim$200 pK and is widely applicable to other species and areas of atom optics.
Transition frequencies were determined for transitions in Ra in an atomic beam and for reference lines in Te$_2$ molecules in a vapor cell. The absolute frequencies were calibrated against a GPS stabilized Rb-clock by means of an optical frequency co mb. The 7s$^2,^1$S$_0$(F = 1/2)-7s7p$,^1$P$_1$(F = 3/2) transition in $^{225}$Ra was determined to be $621,042,124(2),$MHz. The measurements provide input for designing efficient and robust laser cooling of Ra atoms in preparation of a search for a permanent electric dipole moment in Ra isotopes.
A semi-empirical method is used to characterize the 3s(2)3p(2)-3s3p(3) J=2 transition array in P II. In this method, Slater, spin-orbit, and radial parameters are fitted to experimental energy levels in order to obtain a description of the array in t erms of LS-coupling basis vectors. The various IC and CI amplitudes resulting from this model are then used to predict the branching fractions of transitions within the array. Results close to LS-coupling values are presented, and these are compared to branching ratios measured using beam-foil spectroscopy at the THIA laboratory. The work provides support for the hypothesis of Dr. Curtis that transition arrays with little upper state IC but significant upper state CI in atoms of low Z exhibit branching fractions close to LS-coupled values, although the data are inconclusive in this respect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا