ﻻ يوجد ملخص باللغة العربية
A realisation of a metric $d$ on a finite set $X$ is a weighted graph $(G,w)$ whose vertex set contains $X$ such that the shortest-path distance between elements of $X$ considered as vertices in $G$ is equal to $d$. Such a realisation $(G,w)$ is called optimal if the sum of its edge weights is minimal over all such realisations. Optimal realisations always exist, although it is NP-hard to compute them in general, and they have applications in areas such as phylogenetics, electrical networks and internet tomography. In [Adv. in Math. 53, 1984, 321-402] A.~Dress showed that the optimal realisations of a metric $d$ are closely related to a certain polytopal complex that can be canonically associated to $d$ called its tight-span. Moreover, he conjectured that the (weighted) graph consisting of the zero- and one-dimensional faces of the tight-span of $d$ must always contain an optimal realisation as a homeomorphic subgraph. In this paper, we prove that this conjecture does indeed hold for a certain class of metrics, namely the class of totally=decomposable metrics whose tight-span has dimension two. As a corollary, it follows that the minimum Manhattan network problem is a special case of finding optimal realisations of two-dimensional totally-decomposable metrics.
We study minimax estimation of two-dimensional totally positive distributions. Such distributions pertain to pairs of strongly positively dependent random variables and appear frequently in statistics and probability. In particular, for distributions
A linearly constrained framework in $mathbb{R}^d$ is a point configuration together with a system of constraints which fixes the distances between some pairs of points and additionally restricts some of the points to lie in given affine subspaces. It
It is presented the simplest known disproof of the Borsuk conjecture stating that if a bounded subset of n-dimensional Euclidean space contains more than n points, then the subset can be partitioned into n+1 nonempty parts of smaller diameter. The
Given a rigid realisation of a graph $G$ in ${mathbb R}^2$, it is an open problem to determine the maximum number of pairwise non-congruent realisations which have the same edge lengths as the given realisation. This problem can be restated as findin
A bar-joint framework $(G,p)$ in $mathbb{R}^d$ is rigid if the only edge-length preserving continuous motions of the vertices arise from isometries of $mathbb{R}^d$. It is known that, when $(G,p)$ is generic, its rigidity depends only on the underlyi