ﻻ يوجد ملخص باللغة العربية
Group therapy is a central treatment modality for behavioral health disorders such as alcohol and other drug use (AOD) and depression. Group therapy is often delivered under a rolling (or open) admissions policy, where new clients are continuously enrolled into a group as space permits. Rolling admissions policies result in a complex correlation structure among client outcomes. Despite the ubiquity of rolling admissions in practice, little guidance on the analysis of such data is available. We discuss the limitations of previously proposed approaches in the context of a study that delivered group cognitive behavioral therapy for depression to clients in residential substance abuse treatment. We improve upon previous rolling group analytic approaches by fully modeling the interrelatedness of client depressive symptom scores using a hierarchical Bayesian model that assumes a conditionally autoregressive prior for session-level random effects. We demonstrate improved performance using our method for estimating the variance of model parameters and the enhanced ability to learn about the complex correlation structure among participants in rolling therapy groups. Our approach broadly applies to any group therapy setting where groups have changing client composition. It will lead to more efficient analyses of client-level data and improve the group therapy research communitys ability to understand how the dynamics of rolling groups lead to client outcomes.
In this paper, we propose a Bayesian MAP estimator for solving the deconvolution problems when the observations are corrupted by Poisson noise. Towards this goal, a proper data fidelity term (log-likelihood) is introduced to reflect the Poisson stati
This paper is devoted to adaptive long autoregressive spectral analysis when (i) very few data are available, (ii) information does exist beforehand concerning the spectral smoothness and time continuity of the analyzed signals. The contribution is f
Conditional autoregressive (CAR) models are commonly used to capture spatial correlation in areal unit data, and are typically specified as a prior distribution for a set of random effects, as part of a hierarchical Bayesian model. The spatial correl
Recently, to account for low-frequency market dynamics, several volatility models, employing high-frequency financial data, have been developed. However, in financial markets, we often observe that financial volatility processes depend on economic st
Popular parametric and semiparametric hazards regression models for clustered survival data are inappropriate and inadequate when the unknown effects of different covariates and clustering are complex. This calls for a flexible modeling framework to