ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved search for muon-neutrino to electron-neutrino oscillations in MINOS

139   0   0.0 ( 0 )
 نشر من قبل Ryan Patterson
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of a search for $ u_{e}$ appearance in a $ u_{mu}$ beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of $8.2times10^{20}$ protons on the NuMI target at Fermilab, we find that $2sin^2(theta_{23})sin^2(2theta_{13})<0.12 (0.20)$ at 90% confidence level for $deltamathord{=}0$ and the normal (inverted) neutrino mass hierarchy, with a best fit of $2sin^2(theta_{23})sin^2(2theta_{13}),mathord{=},0.041^{+0.047}_{-0.031} (0.079^{+0.071}_{-0.053})$. The $theta_{13}mathord{=}0$ hypothesis is disfavored by the MINOS data at the 89% confidence level.



قيم البحث

اقرأ أيضاً

98 - Leigh H. Whitehead 2016
The MINOS experiment ran from 2003 until 2012 and collected a data sample including 10.71x10^20 protons-on-target (POT) of beam neutrinos, 3.36x10^20 POT of beam antineutrinos and an atmospheric neutrino exposure of 37.88 kt-yrs. The final measuremen t of the atmospheric neutrino oscillation parameters, dm^2_32 and theta_23, came from a full three flavour oscillation analysis of the combined CC nu_mu and CC anti-nu_mu beam and atmospheric samples and the CC nu_e and CC anti-nu_e appearance samples. This analysis yielded the most precise measurement of the atmospheric mass splitting dm^2_32 performed to date. The results are |dm^2_32|=[2.28 - 2.46]x10^-3 eV^2 (68%) and sin^{2}theta_23=0.35-0.65$ (90%) in the normal hierarchy, and |dm^2_32|=[2.32 - 2.53]x10^-3 eV^2 (68%) and sin^{2}theta_23=0.34-0.67 (90%) in the inverted hierarchy. The successor to MINOS in the NOvA era at FNAL, MINOS+, is now collecting data mostly in the 3-10 GeV region, and an analysis of nu_mu disappearance using the first 2.99x10^20 POT of data produced results very consistent with those from MINOS. Future data will further test the standard neutrino oscillation paradigm and allow for improved searches for exotic phenomena including sterile neutrinos, large extra dimensions and non-standard interactions.
Data from the MINOS experiment has been used to search for mixing between muon neutrinos and muon antineutrinos using a time-independent Lorentz-violating formalism derived from the Standard-Model Extension (SME). MINOS is uniquely capable of searchi ng for muon neutrino-antineutrino mixing given its long baseline and ability to distinguish between neutrinos and antineutrinos on an event-by-event basis. Neutrino and antineutrino interactions were observed in the MINOS Near and Far Detectors from an exposure of 10.56$times10^{20}$ protons-on-target from the NuMI neutrino-optimized beam. No evidence was found for such transitions and new, highly stringent limits were placed on the SME coefficients governing them. We place the first limits on the SME parameters $(c_{L})^{TT}_{mumu} $ and $(c_{L})^{TT}_{tautau}$ at $-8.4times10^{-23} < (c_{L})^{TT}_{mumu} < 8.0times10^{-23}$ and $-8.0times10^{-23} < (c_{L})^{TT}_{tautau} < 8.4times10^{-23}$, and the worlds best limits on the $tilde{g}^{ZT}_{muoverline{mu}}$ and $tilde{g}^{ZT}_{tauoverline{tau}}$ parameters at $|tilde{g}^{ZT}_{muoverline{mu}}| < 3.3times 10^{-23}$ and $|tilde{g}^{ZT}_{tauoverline{tau}}| < 3.3times 10^{-23}$, all limits quoted at $3sigma$.
150 - William C. Louis 2018
The MINOS/MINOS+ experiment has recently reported stringent limits on $ u_mu$ disappearance that appear to rule out the 3+1 sterile neutrino model. However, in this paper we wish to point out problems associated with the MINOS/MINOS+ analysis. In par ticular, we find that MINOS/MINOS+ has either underestimated their systematic errors and/or has obtained evidence for physics beyond the 3-neutrino paradigm. Either case would invalidate the limits on $ u_mu$ disappearance.
The KARMEN experiment at the spallation neutron source ISIS used umub from mup--decay at rest in the search for neutrino oscillations umubnueb in the appearance mode, with p( ueb,e+)n as detection reaction of ueb. In total, 15 candidates fulfill a ll conditions for the ueb signature, in agreement with the background expectation of 15.8+-0.5 events, yielding no indication for oscillations. A single event based likelihood analysis leads to upper limits on the oscillation parameters: sin^2(2theta)<1.7x10e-3 for Dm^2>100 eV^2 and Dm^2<0.055 eV^2 for sin^2(2theta)=1 at 90% confidence. Thus, KARMEN does not confirm the LSND experiment and restricts significantly its favored parameter region for umubnueb.
A search for muon anti-neutrino to electron anti-neutrino oscillations was conducted by the Liquid Scintillator Neutrino Detector at the Los Alamos Neutron Science Center using muon anti-neutrinos from positive muon decay at rest. A total excess of 8 7.9 +/- 22.4 +/- 6.0 events consistent with electron anti-neutrino plus proton scattering to positron plus neutron was observed above the expected background. This excess corresponds to an oscillation probability of (0.264 +/- 0.067 +/- 0.045), which is consistent with an earlier analysis. In conjunction with other known limits on neutrino oscillations, the LSND data suggest that neutrino oscillations occur in the 0.2-10 eV^2/c^4 Delta-m^2 range, indicating a neutrino mass greater than 0.4 eV/c^2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا