ﻻ يوجد ملخص باللغة العربية
The evanescent coupling of light between a whispering-gallery-mode bottle microresonator and a sub-wavelength-diameter coupling fiber is actively stabilized by means of a Pound-Drever-Hall technique. We demonstrate the stabilization of a critically coupled resonator with a control bandwidth of 0.1 Hz, yielding a residual transmission of (9 pm 3) times 10^-3 for more than an hour. Simultaneously, the frequency of the resonator mode is actively stabilized.
We report on the fabrication of an ultrahigh quality factor, bottle-like microresonator from a microcapillary, and the realization of Raman lasing therein at pump wavelengths of $1.55~mathrm{mu m}$ and $780~mathrm{nm}$. The dependence of the Raman la
Sensors that are able to detect and track single unlabelled biomolecules are an important tool both to understand biomolecular dynamics and interactions at nanoscale, and for medical diagnostics operating at their ultimate detection limits. Recently,
Microresonator-based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase-locked microcombs have generally had low conversion
There has been significant interest in imaging and focusing schemes that use evanescent waves to beat the diffraction limit, such as those employing negative refractive index materials or hyperbolic metamaterials. The fundamental issue with all such
Optical bottle beams can be used to trap atoms and small low-index particles. We introduce a figure of merit for optical bottle beams, specifically in the context of optical traps, and use it to compare optical bottle-beam traps obtained by three dif