ﻻ يوجد ملخص باللغة العربية
OSIRIS (Optical System for Imaging and low Resolution Integrated Spectroscopy) is the first light instrument of the Gran Telescopio Canarias (GTC). It provides a flexible and competitive tunable filter (TF). Since it is based on a Fabry-Perot interferometer working in collimated beam, the TF transmission wavelength depends on the position of the target with respect to the optical axis. This effect is non-negligible and must be accounted for in the data reduction. Our paper establishes a wavelength calibration for OSIRIS TF with the accuracy required for spectrophotometric measurements using the full field of view (FOV) of the instrument. The variation of the transmission wavelength $lambda(R)$ across the FOV is well described by $lambda(R)=lambda(0)/sqrt{1+(R/f_2)^2}$, where $lambda(0)$ is the central wavelength, $R$ represents the physical distance from the optical axis, and $f_2=185.70pm0.17,$mm is the effective focal length of the camera lens. This new empirical calibration yields an accuracy better than 1,AA across the entire OSIRIS FOV ($sim$8arcmin$times$8arcmin), provided that the position of the optical axis is known within 45 $mu$m ($equiv$ 1.5 binned pixels). We suggest a calibration protocol to grant such precision over long periods, upon re-alignment of OSIRIS optics, and in different wavelength ranges. This calibration differs from the calibration in OSIRIS manual which, nonetheless, provides an accuracy $lesssim1$AA, for $Rlesssim 2arcmin$.
Tunable filters are a powerful way of implementing narrow-band imaging mode over wide wavelength ranges, without the need of purchasing a large number of narrow-band filters covering all strong emission or absorption lines at any redshift. However, o
We investigate the utility of the Tunable Filters (TFs) for obtaining flux calibrated emission line maps of extended objects such as galactic nebulae and nearby galaxies, using the OSIRIS instrument at the 10.4-m GTC. Despite a relatively large field
The super-earth planet GJ 1214b has recently been the focus of several studies, using the transit spectroscopy technique, trying to determine the nature of its atmosphere. Here we focus on the Halpha line as a tool to further restrict the nature of G
OSIRIS is the optical Day One instrument, and so far the only Spanish instrument, currently operating at the GTC. Building and testing an instrument for a 8-10m-class telescope with non-previous commissioning in turn, has represented a truly unique e
We describe techniques concerning wavelength calibration and sky subtraction to maximise the scientific utility of data from tunable filter instruments. While we specifically address data from the Optical System for Imaging and low Resolution Integra