ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray properties expected from AGN feedback in elliptical galaxies

133   0   0.0 ( 0 )
 نشر من قبل Silvia Pellegrini dr.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ISM evolution of elliptical galaxies experiencing feedback from accretion onto a central black hole was studied recently with high-resolution 1D hydrodynamical simulations including radiative heating and pressure effects, a RIAF-like radiative efficiency, mechanical input from AGN winds, and accretion-driven starbursts. Here we focus on the observational properties of the models in the X-ray band (nuclear luminosity; hot ISM luminosity and temperature; temperature and brightness profiles during quiescence and during outbursts). The nuclear bursts last for ~10^7 yr, with a duty-cycle of a few X (10^-3-10^-2); the present epoch bolometric nuclear emission is very sub-Eddington. The ISM thermal luminosity lx oscillates in phase with the nuclear one; this helps reproduce statistically the observed large lx variation. In quiescence the temperature profile has a negative gradient; thanks to past outbursts, the brightness profile lacks the steep shape typical of inflowing models. Outbursts produce disturbances in these profiles. Most significantly, a hot bubble from shocked hot gas is inflated at the galaxy center; the bubble would be conical in shape, and show radio emission. The ISM resumes a smooth appearance on a time-scale of ~200 Myr; the duty-cycle of perturbances in the ISM is of the order of 5-10%. From the present analysis, additional input physics is important in the ISM-black hole coevolution, to fully account for the properties of real galaxies, as a confining external medium and a jet. The jet will reduce further the mass available for accretion (and then the Eddington ratio $l$), and may help, together with an external pressure, to produce flat or positive temperature gradient profiles (observed in high density environments). Alternatively, $l$ can be reduced if the switch from high to low radiative efficiency takes place at a larger $l$ than routinely assumed.



قيم البحث

اقرأ أيضاً

Both radiative and mechanical feedback from Active Galactic Nuclei have been found to be important for the evolution of elliptical galaxies. We compute how a shock may be driven from a central black hole into the gaseous envelope of an elliptical gal axy by mechanical as well as radiative feedback (in the form of nuclear winds) using high resolution 1-D hydrodynamical simulations. We calculate the synchrotron emission from the electron cosmic rays accelerated by the shocks (not the jets) in the central part of elliptical galaxies, and we also study the synchrotron spectrums evolution using the standard diffusive shock acceleration mechanism, which is routinely applied to the scaled volume case of supernova remnants. We find good agreement quantitatively between the synchrotron radio emission produced via this mechanism with extant observations of elliptical galaxies which are undergoing outbursts. Additionally, we also find that synchrotron optical and X-ray emission can co-exist inside elliptical galaxies during a certain phase of evolution subsequent to central outbursts. In fact, our calculations predict a synchrotron luminosity of $sim 1.3times 10^6 L_{odot}$ at the frequency 5 GHz (radio band), of $sim 1.1times 10^6 L_{odot}$ at $4.3times10^{14}$ Hz (R band, corresponding to the absolute magnitude -10.4), and of $sim 1.5times 10^{7} L_{odot}$ at $2.4times10^{17}$ Hz (soft X-ray, 0.5 -- 2.0 keV band).
153 - E.Koulouridis , M.Plionis 2010
We present a study of X-ray AGN overdensities in 16 Abell clusters, within the redshift range 0.073<z<0.279, in order to investigate the effect of the hot inter-cluster environment on the triggering of the AGN phenomenon. The X-ray AGN overdensities, with respect to the field expectations, were estimated for sources with L_x>= 10^{42} erg s^{-1} (at the redshift of the clusters) and within an area of 1 h^{-1}_{72} Mpc radius (excluding the core). To investigate the presence or not of a true enhancement of luminous X-ray AGN in the cluster area, we also derived the corresponding optical galaxy overdensities, using a suitable range of $r$-band magnitudes. We always find the latter to be significantly higher (and only in two cases roughly equal) with respect to the corresponding X-ray overdensities. Over the whole cluster sample, the mean X-ray point-source overdensity is a factor of ~4 less than that corresponding to bright optical galaxies, a difference which is significant at a >0.995 level, as indicated by an appropriate t-student test. We conclude that the triggering of luminous X-ray AGN in rich clusters is strongly suppressed. Furthermore, searching for optical SDSS counterparts of all the X-ray sources, associated with our clusters, we found that about half appear to be background QSOs, while others are background and foreground AGN or stars. The true overdensity of X-ray point sources, associated to the clusters, is therefore even smaller than what our statistical approach revealed.
194 - L. Ciotti 2010
We find, from high-resolution hydro simulations, that winds from AGN effectively heat the inner parts (~100 pc) of elliptical galaxies, reducing infall to the central SMBH; and radiative (photoionization and X-ray) heating reduces cooling flows at th e kpc scale. Including both types of feedback with (peak) efficiencies of 3 10^{-4} < epsilon_mech < 10^{-3} and of epsilon_rad ~10^{-1.3} respectively, produces systems having duty-cycles, central SMBH masses, X-ray luminosities, optical light profiles, and E+A spectra in accord with the broad suite of modern observations of massive elliptical systems. Our main conclusion is that mechanical feedback (including all three of energy, momentum and mass) is necessary but the efficiency, based on several independent arguments must be a factor of 10 lower than is commonly assumed. Bursts are frequent at z>1 and decline in frequency towards the present epoch as energy and metal rich gas are expelled from the galaxies into the surrounding medium. For a representative galaxy of final stellar mass ~3 10^{11} Msun, roughly 3 10^{10} Msun of recycled gas has been added to the ISM since z~2 and, of that, roughly 63% has been expelled from the galaxy, 19% has been converted into new metal rich stars in the central few hundred parsecs, and 2% has been added to the central SMBH, with the remaining 16% in the form hot X-ray emitting ISM. The bursts occupy a total time of ~170 Myr, which is roughly 1.4% of the available time. Of this time, the central SMBH would be seen as an UV or optical source for ~45% and ~71$% of the time, respectively. Restricting to the last 8.5 Gyr, the burst occupy ~44 Myr, corresponding to a fiducial duty-cycle of ~5 10^{-3}.
123 - F.E. Bauer 2009
We report X-ray constraints for 20 of 52 high-z ULIRGs identified in the Spitzer xFLS to constrain their obscuration. Notably, decomposition of Spitzer-IRS spectra for the 52 objects already indicates that most are weak-PAH ULIRGs dominated by hot-du st continua, characteristic of AGN. Given their redshifts, they have AGN bolometric luminosities of ~1e45-1e47 erg/s comparable to powerful QSOs. This, coupled with their high IR-to-optical ratios and often significant silicate absorption, strongly argues in favor of these mid-IR objects being heavily obscured QSOs. At X-ray energies, we marginally detect two ULIRGs, while the rest have only upper limits. Using the IRS-derived 5.8um AGN continuum luminosity as a proxy for the expected X-ray luminosities, we find that all of the observed sources must individually be highly obscured, while X-ray stacking limits on the undetected sources suggest that the majority, if not all, are likely to be at least mildly Compton-thick (NH>1e24 cm-2). With a space density of ~1.4e-7 Mpc-3 at z~2, such objects imply a lower limit on the obscured AGN fraction (i.e., the ratio of AGN above and below NH=1e22 cm-2) of >~1.7:1 even among luminous QSOs. Our findings, which are based on extensive multi-wavelength constraints including Spitzer IRS spectra, should aid in the interpretation of similar objects from larger or deeper mid-IR surveys, where considerable uncertainty about the source properties remains and comparable follow-up is not yet feasible.
X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the inter-galactic medium, potentially having a significant contribution to the heating and reionization of the early Universe. The two most important sources of X-ray photons in the Universe are active galactic nuclei (AGN) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z~ 20) until today. We estimate that X-ray emission from XRBs dominates over AGN at z>6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by ~4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of ~300 Myr and then decreases gradually at later times, showing little variation for mean stellar ages > 3 Gyr. Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا