Randomness vs Non Locality and Entanglement


الملخص بالإنكليزية

According to quantum theory, the outcomes obtained by measuring an entangled state necessarily exhibit some randomness if they violate a Bell inequality. In particular, a maximal violation of the CHSH inequality guarantees that 1.23 bits of randomness are generated by the measurements. However, by performing measurements with binary outcomes on two subsystems one could in principle generate up to two bits of randomness. We show that correlations that violate arbitrarily little the CHSH inequality or states with arbitrarily little entanglement can be used to certify that close to the maximum of two bits of randomness are produced. Our results show that non-locality, entanglement, and the amount of randomness that can be certified in a Bell-type experiment are inequivalent quantities. From a practical point of view, they imply that device-independent quantum key distribution with optimal key generation rate is possible using almost-local correlations and that device-independent randomness generation with optimal rate is possible with almost-local correlations and with almost-unentangled states.

تحميل البحث