ﻻ يوجد ملخص باللغة العربية
Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find analytical expression of quantum discord is an intractable task. In this paper, we discuss thoroughly the case of two-qubit rank-two states. An analytical expression for the quantum discord is obtained by means of Koashi-Winter relation. A geometric picture is demonstrated by means of quantum steering ellipsoid. We point out that in this case the optimal measurement is indeed the von Neumann measurement, which is usually used in the study of quantum discord. However, for some two-qubit states with the rank larger than two, we find that three-element POVM measurement is more optimal. It means that more careful attention should be paid in the discussion of quantum discord.
Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find analytical expression of quantum discord is an intractable task. Exact results are known only for very special states, namely, two-qubit
We present an efficient method to solve the quantum discord of two-qubit X states exactly. A geometric picture is used to clarify whether and when the general POVM measurement is superior to von Neumann measurement. We show that either the von Neuman
We study a behavior of two-qubit states subject to tomographic measurement. We propose a novel approach to definition of asymmetry in quantum bipartite state based on its tomographic Shannon entropies. We consider two types of measurement bases: the
Recently, the fast development of quantum technologies led to the need for tools allowing the characterization of quantum resources. In particular, the ability to estimate non-classical aspects, e.g. entanglement and quantum discord, in two-qubit sys
We investigate the geometric picture of the level surfaces of quantum entanglement and geometric measure of quantum discord (GMQD) of a class of X-states, respectively. This pictorial approach provides us a direct understanding of the structure of en