ﻻ يوجد ملخص باللغة العربية
We show how one can obtain an asymptotic expression for some special functions satisfying a second order differential equation with a very explicit error term starting from appropriate upper bounds. We will work out the details for the Bessel function $J_ u (x)$ and the Airy function $Ai(x)$ and find a sharp approximation for their zeros. We also answer the question raised by Olenko by showing that $$c_1 | u^2-1/4,| < sup_{x ge 0} x^{3/2}|J_ u(x)-sqrt{frac{2}{pi x}} , cos (x-frac{pi u}{2}-frac{pi}{4},)| <c_2 | u^2-1/4,|, $$ $ u ge -1/2 , ,$ for some explicit numerical constants $c_1$ and $c_2.$
We examine the sum of modified Bessel functions with argument depending quadratically on the summation index given by [S_ u(a)=sum_{ngeq 1} (frac{1}{2} an^2)^{- u} K_ u(an^2)qquad (|arg,a|<pi/2)] as the parameter $|a|to 0$. It is shown that the posit
In this paper, sums represented in (3) are studied. The expressions are derived in terms of Bessel functions of the first and second kinds and their integrals. Further, we point out the integrals can be written as a Meijer G function.
In this paper necessary and sufficient conditions are deduced for the starlikeness of Bessel functions of the first kind and their derivatives of the second and third order by using a result of Shah and Trimble about transcendental entire functions w
We review some aspects of the theory of spherical Bessel functions and Struve functions by means of an operational procedure essentially of umbral nature, capable of providing the straightforward evaluation of their definite integrals and of successi
The aim of this work is to demonstrate various an interesting recursion formulas, differential and integral operators, integration formulas, and infinite summation for each of Horns hypergeometric functions $mathrm{H}_{1}$, $mathrm{H}_{2}$, $mathrm{H