ﻻ يوجد ملخص باللغة العربية
A contribution is presented to the application of fractal properties and log-periodic corrections to the masses of several nuclei (isotopes or isotones), and to the energy levels of some nuclei. The fractal parameters $alpha$ and $lambda$ are not randomly distributed, but take a small number of values, common also with the values extracted previously from fractal distributions of quark, lepton, and hadronic masses. Several masses of still unobserved nuclei are tentatively predicted.
Are Dark Matter and Dark Energy the result of uncalculated addition derivatives? The need to introduce dark matter dark and energy becomes unnecessary if we consider that, the phenomenon of dark matter and dark energy is a result of not computing the
Classical oscillator differential equation is replaced by the corresponding (finite time) difference equation. The equation is, then, symmetrized so that it remains invariant under the change d going to -d, where d is the smallest span of time. This
The requirement that their gravitational binding self-energy density must at least equal the background repulsive dark energy density for large scale cosmic structures implies a mass-radius relation of M/R^2 ~ 1g/cm^2, as pointed out earlier. This re
A contribution is presented to the study of hadron spectroscopy through the use of fractals and discrete scale invariance implying log-periodic corrections to continuous scaling. The masses of mesons and baryons, reported by the Particle Data Group (
We calculate, in a systematic way, the enhancement effect on antiproton-proton and antiproton-nucleus annihilation cross sections at low energy due to the initial state electrostatic interaction between the projectile and the target nucleus. This cal