ترغب بنشر مسار تعليمي؟ اضغط هنا

Text Classification: A Sequential Reading Approach

123   0   0.0 ( 0 )
 نشر من قبل Gabriel Dulac-Arnold
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose to model the text classification process as a sequential decision process. In this process, an agent learns to classify documents into topics while reading the document sentences sequentially and learns to stop as soon as enough information was read for deciding. The proposed algorithm is based on a modelisation of Text Classification as a Markov Decision Process and learns by using Reinforcement Learning. Experiments on four different classical mono-label corpora show that the proposed approach performs comparably to classical SVM approaches for large training sets, and better for small training sets. In addition, the model automatically adapts its reading process to the quantity of training information provided.



قيم البحث

اقرأ أيضاً

We propose a novel classification technique whose aim is to select an appropriate representation for each datapoint, in contrast to the usual approach of selecting a representation encompassing the whole dataset. This datum-wise representation is fou nd by using a sparsity inducing empirical risk, which is a relaxation of the standard L 0 regularized risk. The classification problem is modeled as a sequential decision process that sequentially chooses, for each datapoint, which features to use before classifying. Datum-Wise Classification extends naturally to multi-class tasks, and we describe a specific case where our inference has equivalent complexity to a traditional linear classifier, while still using a variable number of features. We compare our classifier to classical L 1 regularized linear models (L 1-SVM and LARS) on a set of common binary and multi-class datasets and show that for an equal average number of features used we can get improved performance using our method.
We propose a new approach to address the text classification problems when learning with partial labels is beneficial. Instead of offering each training sample a set of candidate labels, we assign negative-oriented labels to the ambiguous training ex amples if they are unlikely fall into certain classes. We construct our new maximum likelihood estimators with self-correction property, and prove that under some conditions, our estimators converge faster. Also we discuss the advantages of applying one of our estimator to a fully supervised learning problem. The proposed method has potential applicability in many areas, such as crowdsourcing, natural language processing and medical image analysis.
The Iterated Prisoners Dilemma has guided research on social dilemmas for decades. However, it distinguishes between only two atomic actions: cooperate and defect. In real-world prisoners dilemmas, these choices are temporally extended and different strategies may correspond to sequences of actions, reflecting grades of cooperation. We introduce a Sequential Prisoners Dilemma (SPD) game to better capture the aforementioned characteristics. In this work, we propose a deep multiagent reinforcement learning approach that investigates the evolution of mutual cooperation in SPD games. Our approach consists of two phases. The first phase is offline: it synthesizes policies with different cooperation degrees and then trains a cooperation degree detection network. The second phase is online: an agent adaptively selects its policy based on the detected degree of opponent cooperation. The effectiveness of our approach is demonstrated in two representative SPD 2D games: the Apple-Pear game and the Fruit Gathering game. Experimental results show that our strategy can avoid being exploited by exploitative opponents and achieve cooperation with cooperative opponents.
114 - Yibo Hu , Latifur Khan 2021
Deep neural networks have significantly contributed to the success in predictive accuracy for classification tasks. However, they tend to make over-confident predictions in real-world settings, where domain shifting and out-of-distribution (OOD) exam ples exist. Most research on uncertainty estimation focuses on computer vision because it provides visual validation on uncertainty quality. However, few have been presented in the natural language process domain. Unlike Bayesian methods that indirectly infer uncertainty through weight uncertainties, current evidential uncertainty-based methods explicitly model the uncertainty of class probabilities through subjective opinions. They further consider inherent uncertainty in data with different root causes, vacuity (i.e., uncertainty due to a lack of evidence) and dissonance (i.e., uncertainty due to conflicting evidence). In our paper, we firstly apply evidential uncertainty in OOD detection for text classification tasks. We propose an inexpensive framework that adopts both auxiliary outliers and pseudo off-manifold samples to train the model with prior knowledge of a certain class, which has high vacuity for OOD samples. Extensive empirical experiments demonstrate that our model based on evidential uncertainty outperforms other counterparts for detecting OOD examples. Our approach can be easily deployed to traditional recurrent neural networks and fine-tuned pre-trained transformers.
115 - Krzysztof Fiok 2021
The performance of text classification methods has improved greatly over the last decade for text instances of less than 512 tokens. This limit has been adopted by most state-of-the-research transformer models due to the high computational cost of an alyzing longer text instances. To mitigate this problem and to improve classification for longer texts, researchers have sought to resolve the underlying causes of the computational cost and have proposed optimizations for the attention mechanism, which is the key element of every transformer model. In our study, we are not pursuing the ultimate goal of long text classification, i.e., the ability to analyze entire text instances at one time while preserving high performance at a reasonable computational cost. Instead, we propose a text truncation method called Text Guide, in which the original text length is reduced to a predefined limit in a manner that improves performance over naive and semi-naive approaches while preserving low computational costs. Text Guide benefits from the concept of feature importance, a notion from the explainable artificial intelligence domain. We demonstrate that Text Guide can be used to improve the performance of recent language models specifically designed for long text classification, such as Longformer. Moreover, we discovered that parameter optimization is the key to Text Guide performance and must be conducted before the method is deployed. Future experiments may reveal additional benefits provided by this new method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا