ﻻ يوجد ملخص باللغة العربية
The authors theoretically investigate quantum confinement and transition energies in quantum wells (QWs) asymmetrically positioned in wrinkled nanomembranes. Calculations reveal that the wrinkle profile induces both blue- and redshifts depending on the lateral position of the QW probed. Relevant radiative transistions include the ground state of the electron (hole) and excited states of the hole (electron). Energy shifts as well as stretchability of the structure are studied as a function of wrinkle amplitude and period. Large tunable bandwidths of up to 70 nm are predicted for highly asymmetric wrinkled QWs.
We present here the electronic structure and optical properties of InGaAs quantum wells with barrier doped with Manganese. We calculated the electronic states and optical emission within the envelope function and effective mass approximations using t
In this paper we present a detailed analysis of the structural, electronic, and optical properties of an $m$-plane (In,Ga)N/GaN quantum well structure grown by metal organic vapor phase epitaxy. The sample has been structurally characterized by x-ray
We present theory and calculations for coherent high-fidelity quantum control of many-particle states in semiconductor quantum wells. We show that coupling a two-electron double quantum dot to a terahertz optical source enables targeted excitations t
We present an atomistic description of the electronic and optical properties of $text{In}_{0.25}text{Ga}_{0.75}$N/GaN quantum wells. Our analysis accounts for fluctuations of well width, local alloy composition, strain and built-in field fluctuations
Refrigeration of a solid-state system with light has potential applications for cooling small-scale electronics and photonics. We show theoretically that two coupled semiconductor quantum wells are efficient cooling media for optical refrigeration be