ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effect of Charge Order on the Plasmon Dispersion in Transition-Metal Dichalcogenides

417   0   0.0 ( 0 )
 نشر من قبل Jasper van Wezel
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the dispersion of the charge carrier plasmon in the three prototypical charge-density wave bearing transition-metal dichalcogenides 2H-TaSe2, 2H-TaS2 and 2H-NbSe2 employing electron energy-loss spectroscopy. For all three compounds the plasmon dispersion is found to be negative for small momentum transfers. This is in contrast to the generic behavior observed in simple metals as well as the related system 2H-NbS2, which does not exhibit charge order. We present a semiclassical Ginzburg-Landau model which accounts for these observations, and argue that the vicinity to a charge ordered state is thus reflected in the properties of the collective excitations.



قيم البحث

اقرأ أيضاً

Two-dimensional transition-metal dichalcogenides (TMDs) are gaining increasing attention as alternative to graphene for their very high potential in optoelectronics applications. Here we consider two prototypical metallic 2D TMDs, NbSe$_2$ and TaS$_2 $. Using a first-principles approach, we investigate the properties of the localised intraband $d$ plasmon that cannot be modelled on the basis of the homogeneous electron gas. Finally, we discuss the effects of the reduced dimensionality on the plasmon dispersion through the interplay between interband transitions and local-field effects. This result can be exploited to tune the plasmonic properties of these novel 2D materials.
We investigate the effect of charge self-consistency (CSC) in density functional theory plus dynamical mean-field theory (DFT+DMFT) calculations compared to simpler one-shot calculations for materials where interaction effects lead to a strong redist ribution of electronic charges between different orbitals or between different sites. We focus on two systems close to a metal-insulator transition, for which the importance of CSC is currently not well understood. Specifically, we analyze the strain-related orbital polarization in the correlated metal CaVO$_3$ and the spontaneous electronic charge disproportionation in the rare-earth nickelate LuNiO$_3$. In both cases, we find that the CSC treatment reduces the charge redistribution compared to cheaper one-shot calculations. However, while the MIT in CaVO$_3$ is only slightly shifted due to the reduced orbital polarization, the effect of the site polarization on the MIT in LuNiO$_3$ is more subtle. Furthermore, we highlight the role of the double-counting correction in CSC calculations containing different inequivalent sites.
Low-dimensional electron systems, as realized naturally in graphene or created artificially at the interfaces of heterostructures, exhibit a variety of fascinating quantum phenomena with great prospects for future applications. Once electrons are con fined to low dimensions, they also tend to spontaneously break the symmetry of the underlying nuclear lattice by forming so-called density waves; a state of matter that currently attracts enormous attention because of its relation to various unconventional electronic properties. In this study we reveal a remarkable and surprising feature of charge density waves (CDWs), namely their intimate relation to orbital order. For the prototypical material 1T-TaS2 we not only show that the CDW within the two-dimensional TaS2-layers involves previously unidentified orbital textures of great complexity. We also demonstrate that two metastable stackings of the orbitally ordered layers allow to manipulate salient features of the electronic structure. Indeed, these orbital effects enable to switch the properties of 1T-TaS2 nanostructures from metallic to semiconducting with technologically pertinent gaps of the order of 200 meV. This new type of orbitronics is especially relevant for the ongoing development of novel, miniaturized and ultra-fast devices based on layered transition metal dichalcogenides.
A circularly polarized a.c. pump field illuminated near resonance on two-dimensional transition metal dichalcogenides (TMDs) produces an anomalous Hall effect in response to a d.c. bias field. In this work, we develop a theory for this photo-induced anomalous Hall effect in undoped TMDs irradiated by a strong coherent laser field. The strong field renormalizes the equilibrium bands and opens up a dynamical energy gap where single-photon resonance occurs. The resulting photon dressed states, or Floquet states, are treated within the rotating wave approximation. A quantum kinetic equation approach is developed to study the non-equilibrium density matrix and time-averaged transport currents under the simultaneous influence of the strong a.c. pump field and the weak d.c. probe field. Dissipative effects are taken into account in the kinetic equation that captures relaxation and dephasing. The photo-induced longitudinal and Hall conductivities display notable resonant signatures when the pump field frequency reaches the spin-split interband transition energies. Rather than valley polarization, we find that the anomalous Hall current is mainly driven by the intraband response of photon-dressed electron populations near the dynamical gap at both valleys, accompanied by a smaller contribution due to interband coherences. These findings highlight the importance of photon-dressed bands and non-equilibrium distribution functions in achieving a proper understanding of photo-induced anomalous Hall effect in a strong pump field.
274 - M. A. Cazalilla , H. Ochoa , 2013
We propose to engineer time-reversal-invariant topological insulators in two-dimensional (2D) crystals of transition metal dichalcogenides (TMDCs). We note that, at low doping, semiconducting TMDCs under shear strain will develop spin-polarized Landa u levels residing in different valleys. We argue that gaps between Landau levels in the range of $10-100$ Kelvin are within experimental reach. In addition, we point out that a superlattice arising from a Moire pattern can lead to topologically non-trivial subbands. As a result, the edge transport becomes quantized, which can be probed in multi-terminal devices made using strained 2D crystals and/or heterostructures. The strong $d$ character of valence and conduction bands may also allow for the investigation of the effects of electron correlations on the topological phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا