ﻻ يوجد ملخص باللغة العربية
The flexoelectric conversion of mechanical to electrical energy in nematic liquid crystals is investigated using continuum theory. Since the electrical energy produced cannot exceed the mechanical energy supplied, and vice-versa, upper bounds are imposed on the magnitudes of the flexoelectric coefficients in terms of the elastic and dielectric coefficients. For conventional values of the elastic and dielectric coefficients, it is shown that the flexoelectric coefficients may not be larger than a few tens of pC/m. This has important consequences for the future use of such flexoelectric materials in devices and the related energetics of distorted equilibrium structures.
We present in this paper a detailed analysis of the flexoelectric instability of a planar nematic layer in the presence of an alternating electric field (frequency $omega$), which leads to stripe patterns (flexodomains) in the plane of the layer. Thi
Previous theoretical studies of calamitic (i.e., rod-like) ionic liquid crystals (ILCs) based on an effective one-species model led to indications of a novel smectic-A phase with a layer spacing being much larger than the length of the mesogenic (i.e
We review and compare recent work on the properties of fluctuating interfaces between nematic and isotropic liquid-crystalline phases. Molecular dynamics and Monte Carlo simulations have been carried out for systems of ellipsoids and hard rods with a
Starting from a microscopic definition of an alignment vector proportional to the polarization, we discuss the hydrodynamics of polar liquid crystals with local $C_{infty v}$-symmetry. The free energy for polar liquid crystals differs from that of ne
We study the topology of smectic defects in two and three dimensions. We give a topological classification of smectic point defects and disclination lines in three dimensions. In addition we describe the combination rules for smectic point defects in