ﻻ يوجد ملخص باللغة العربية
We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited to ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusion-like equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.
We present a theoretical model for electromagnetically induced transparency (EIT) in vapor, that incorporates atomic motion and velocity-changing collisions into the dynamics of the density-matrix distribution. Within a unified formalism we demonstra
The atom-based traceable standard for microwave electrometry shows promising advantages by enabling stable and uniform measurement. Here we theoretically propose and then experimentally realize an alternative direct International System of Units (SI)
The explanation presented in [Taichenachev et al, Phys. Rev. A {bf 61}, 011802 (2000)] according to which the electromagnetically induced absorption (EIA) resonances observed in degenerate two level systems are due to coherence transfer from the exci
Electromagnetically induced absorption (EIA) was observed on a sample of $% ^{85}Rb$ in a magneto-optical trap using low intensity cw copropagating pump and probe optical fields. At moderate trapping field intensity, the EIA spectrum is determined by
We present experimental observation of electromagnetically induced transparency (EIT) on a single macroscopic artificial atom (superconducting quantum system) coupled to open 1D space of a transmission line. Unlike in a optical media with many atoms,