ﻻ يوجد ملخص باللغة العربية
We show that under rather general assumptions on the form of the entropy function, the energy balance equation for a system in thermodynamic equilibrium is equivalent to a set of nonlinear equations of hydrodynamic type. This set of equations is integrable via the method of the characteristics and it provides the equation of state for the gas. The shock wave catastrophe set identifies the phase transition. A family of explicitly solvable models of non-hydrodynamic type such as the classical plasma and the ideal Bose gas are also discussed.
We consider the natural definition of DLR measure in the setting of $sigma$-finite measures on countable Markov shifts. We prove that the set of DLR measures contains the set of conformal measures associated with Walters potentials. In the BIP case,
We investigate two solvable models for Bose-Einstein condensates and extract physical information by studying the structure of the solutions of their Bethe ansatz equations. A careful observation of these solutions for the ground state of both models
We construct a novel approach, based on thermodynamic geometry, to characterize first-order phase transitions from a microscopic perspective, through the scalar curvature in the equilibrium thermodynamic state space. Our method resolves key theoretic
Inverse phase transitions are striking phenomena in which an apparently more ordered state disorders under cooling. This behavior can naturally emerge in tricritical systems on heterogeneous networks and it is strongly enhanced by the presence of dis
We study the quantum fidelity approach to characterize thermal phase transitions. Specifically, we focus on the mixed-state fidelity induced by a perturbation in temperature. We consider the behavior of fidelity in two types of second-order thermal p