ﻻ يوجد ملخص باللغة العربية
Using the probability theory-based approach, this paper reveals the equivalence of an arbitrary NP-complete problem to a problem of checking whether a level set of a specifically constructed harmonic cost function (with all diagonal entries of its Hessian matrix equal to zero) intersects with a unit hypercube in many-dimensional Euclidean space. This connection suggests the possibility that methods of continuous mathematics can provide crucial insights into the most intriguing open questions in modern complexity theory.
In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an $m times n$ grid of cells, where each cell possibly contains a clue among +, -, |. The goal is to partition the grid into disjoint rectangles, where every rectangle contains exac
When can $t$ terminal pairs in an $m times n$ grid be connected by $t$ vertex-disjoint paths that cover all vertices of the grid? We prove that this problem is NP-complete. Our hardness result can be compared to two previous NP-hardness proofs: Lynch
We prove NP-completeness of Yin-Yang / Shiromaru-Kuromaru pencil-and-paper puzzles. Viewed as a graph partitioning problem, we prove NP-completeness of partitioning a rectangular grid graph into two induced trees (normal Yin-Yang), or into two induce
Holzer and Holzer (Discrete Applied Mathematics 144(3):345--358, 2004) proved that the Tantrix(TM) rotation puzzle problem with four colors is NP-complete, and they showed that the infinite variant of this problem is undecidable. In this paper, we st
The computational complexity of the partition, 0-1 subset sum, unbounded subset sum, 0-1 knapsack and unbounded knapsack problems and their multiple variants were studied in numerous papers in the past where all the weights and profits were assumed t