ﻻ يوجد ملخص باللغة العربية
We solve the entanglement classification under stochastic local operations and classical communication (SLOCC) for general n-qubit states. For two arbitrary pure n-qubit states connected via local operations, we establish an equation between the two coefficient matrices associated with the states. The rank of the coefficient matrix is preserved under SLOCC and gives rise to a simple way of partitioning all the pure states of n qubits into different families of entanglement classes, as exemplified here. When applied to the symmetric states, this approach reveals that all the Dicke states |l,n> with l=1, ..., [n/2] are inequivalent under SLOCC.
Recently, several schemes for the experimental creation of Dicke states were described. In this paper, we show that all the $n$-qubit symmetric Dicke states with $l$ ($2leq lleq (n-2)$) excitations are inequivalent to the $% |GHZ>$ state or the $|W>$
In a recent paper [Phys. Rev. A 76, 032304(2007)], Li et al. proposed the definition of the residual entanglement for n qubits by means of the Stochastic local operations and classical communication. Here we argue that their definition is not suitable for the case of odd-n qubits.
We construct $ell $-spin-flipping matrices from the coefficient matrices of pure states of $n$ qubits and show that the $ell $-spin-flipping matrices are congruent and unitary congruent whenever two pure states of $n$ qubits are SLOCC and LU equivale
We describe a general approach to proving the impossibility of implementing a quantum channel by local operations and classical communication (LOCC), even with an infinite number of rounds, and find that this can often be demonstrated by solving a se
We have reviewed the comment in [3], posted on arXiv.org concerning our recent work in [1]. We reply to the comment in this paper.