ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of three new proto-Planetary Nebulae exhibiting the unidentified feature at 21 um

214   0   0.0 ( 0 )
 نشر من قبل Luciano Cerrigone
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Cerrigone




اسأل ChatGPT حول البحث

Among its great findings, the IRAS mission showed the existence of an unidentified mid-IR feature around 21 um. Since its discovery, this feature has been detected in all C-rich proto-PNe of intermediate spectral type (A-G) and - weakly - in a few PNe and AGB stars, but the nature of its carriers remains unknown. In this paper, we show the detection of this feature in the spectra of three new stars transiting from the AGB to the PN stage obtained with the Spitzer Space Telescope. Following a recent suggestion, we try to model the SEDs of our targets with amorphous carbon and FeO, which might be responsible for the unidentified feature. The fit thus obtained is not completely satisfactory, since the shape of the feature is not well matched. In the attempt to relate the unidentified feature to other dust features, we retrieved mid-IR spectra of all the 21-um sources currently known from ISO and Spitzer on-line archives and noticed a correlation between the flux emitted in the 21-um feature and that emitted at 7 and 11 um (PAH bands and HAC broad emission). Such a correlation may point to a common nature of the carriers.



قيم البحث

اقرأ أيضاً

Spitzer MIPS 24 um images were obtained for 36 Galactic planetary nebulae (PNe) whose central stars are hot white dwarfs (WDs) or pre-WDs with effective temperatures of ~100,000 K or higher. Diffuse 24 um emission is detected in 28 of these PNe. The eight non-detections are angularly large PNe with very low H-alpha surface brightnesses. We find three types of correspondence between the 24 um emission and H-alpha line emission of these PNe: six show 24 um emission more extended than H-alpha emission, nine have a similar extent at 24 um and H-alpha, and 13 show diffuse 24 um emission near the center of the H-alpha shell. The sizes and surface brightnesses of these three groups of PNe and the non-detections suggest an evolutionary sequence, with the youngest ones being brightest and the most evolved ones undetected. The 24 um band emission from these PNe is attributed to [O IV] 25.9 um and [Ne V] 24.3 um line emission and dust continuum emission, but the relative contributions of these three components depend on the temperature of the central star and the distribution of gas and dust in the nebula.
We compute successfully the launching of two magnetic winds from two circumbinary disks formed after a common envelope event. The launching is produced by the increase of magnetic pressure due to the collapse of the disks. The collapse is due to inte rnal torques produced by a weak poloidal magnetic field. The first wind can be described as a wide jet, with an average mass-loss rate of $sim 1.3 times 10^{-7}$ Moy and a maximum radial velocity of $sim 230$ kms. The outflow has a half-opening angle of $sim 20^{circ}$. Narrow jets are also formed intermittently with velocities up to 3,000 kms, with mass-loss rates of $sim 6 times 10^{-12} $ Moy during short periods of time. The second wind can be described as a wide X-wind, with an average mass-loss rate of $sim 1.68 times 10^{-7}$ Moy and a velocity of $sim 30$ kms. A narrow jet is also formed with a velocity of 250 kms, and a mass-loss rates of $sim 10^{-12} $ Moy. The computed jets are used to provide inflow boundary conditions for simulations of proto-planetary nebulae. The wide jet evolves into a molecular collimated outflow within a few astronomical units, producing proto-planetary nebulae with bipolar, elongated shapes, whose kinetic energies reach $sim 4 times 10^{45}$ erg at 1,000 years. Similarities with observed features in W43A, OH231.8+4.2, and Hen 3-1475 are discussed. The computed wide X-wind produces proto-planetary nebulae with slower expansion velocities, with bipolar and elliptical shapes, and possible starfish type and quadrupolar morphology.
179 - Chih-Hao Hsia 2014
We report a multi-wavelength study of four new planetary nebula (PN) candidates selected from the INT/WFC Photometric Ha Survey of the Northern Galactic Plane (IPHAS) and Deep Sky Hunter (DSH) catalogues. We present mid-resolution optical spectra of these PNs. The PN status of our sample was confirmed by optical narrow-band images and mid-resolution spectra. Based on the locations of these objects in the log (Ha/[N II]) versus log (Ha/[S II]) diagnostic diagram, we conclude that these sources are evolved lowexcitation PNs. The optical and infrared appearances of these newly discovered PNs are discussed. Three of the new nebulae studied here are detected in infrared and have low infrared-to-radio flux ratios, probably suggesting that they are evolved. Furthermore, we derive the dynamical ages and distances of these nebulae and study the spectral energy distribution for one of them with extensive infrared archival data.
105 - J. Alcolea 1999
We present our recent results on mm-wave CO observations of proto-planetary nebulae. These include high-resolution interferometric maps of various CO lines in three well known bipolar PPNe: M1-92, M2-56 and OH231.8+4.2. The global properties of the h igh velocity molecular emission in post-AGB sources have been also studied, by means of high-sensitivity single dish observations of the J=1-0 and 2-1 lines of 12CO and 13CO. We discuss the implications of these results to constrain the origin of the post-AGB molecular high-velocity winds and the shaping of bipolar PPNe and PNe. In addition, we also present the results of an interferometric map of the molecular envelope around the luminous high-latitude star 89 Her, a low mass post-AGB source which is also a close binary system.
We present Gemini-South observations of nine faint and extended planetary nebulae. Using direct images taken with the spectrograph GMOS, we built the $(u - g)$ vs. $(g - r)$ diagrams of the stars in the observed areas which allowed us, also consideri ng their geometrical positions, to identify the probable central stars of the nebulae. Our stellar spectra of seven stars, also taken with GMOS, indicate that four (and probably two more) objects are white dwarfs of the DAO subtype. Moreover, the white dwarf status of the four stars is confirmed by the parameters $ T_{mathrm{eff}}$ and $ log g$ derived with the help of theoretical stellar spectra. Given this evidence, we propose that these hot stars are the central ionizing sources of the nebulae. With this work we hope to help improve the current scarce statistics on central white dwarfs in planetary nebulae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا