ﻻ يوجد ملخص باللغة العربية
We present a ~6.5x8 Expanded Very Large Array (EVLA) mosaic observations of the NH3 (1,1) emission in the Barnard 5 region in Perseus, with an angular resolution of 6. This map covers the coherent region, where the dense gas presents subsonic non-thermal motions (as seen from single dish observations with the Green Bank Telescope, GBT). The combined EVLA and GBT observations reveal, for the first time, a striking filamentary structure (20 wide or 5,000 AU at the distance of Perseus) in this low-mass star forming region. The integrated intensity profile of this structure is consistent with models of an isothermal filament in hydrostatic equilibrium. The observed separation between the B5-IRS1 young stellar object (YSO), in the central region of the core, and the northern starless condensation matches the Jeans length of the dense gas. This suggests that the dense gas in the coherent region is fragmenting. The region observed displays a narrow velocity dispersion, where most of the gas shows evidence for subsonic turbulence, and where little spatial variations are present. It is only close to the YSO where an increase in the velocity dispersion is found, but still displaying subsonic non-thermal motions
We characterize in detail the two ~0.3 pc long filamentary structures found within the subsonic region of Barnard 5. We use combined GBT and VLA observations of the molecular lines NH$_3$(1,1) and (2,2) at a resolution of 1800 au, as well as JCMT con
We present a multiwavelength morphological analysis of star forming clouds and filaments in the central ($< 50$ kpc) regions of 16 low redshift ($z<0.3$) cool core brightest cluster galaxies (BCGs). New Hubble Space Telescope (HST) imaging of far ult
We present the POL-2 850 $mu$m linear polarization map of the Barnard 1 clump in the Perseus molecular cloud complex from the B-fields In STar-forming Region Observations (BISTRO) survey at the James Clerk Maxwell Telescope. We find a trend of decrea
Barnard 59 and Lupus 1 are two nearby star-forming regions visible from the southern hemisphere. In this manuscript, we present deep ($sigma$ $lesssim$ 15 $ mu$Jy) radio observations ($ u$ = 6 GHz; $lambda$ = 5 cm) of these regions, and report the de
Understanding the early stages of star formation is a research field of ongoing development, both theoretically and observationally. In this context, molecular data have been continuously providing observational constraints on the gas dynamics at dif